SIGN-CHANGING SOLUTIONS FOR A PARAMETER-DEPENDENT QUASILINEAR EQUATION

被引:7
作者
Liu, Jiaquan [1 ]
Liu, Xiangqing [2 ]
Wang, Zhi-Qiang [3 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2021年 / 14卷 / 05期
关键词
Quasilinear elliptic equation; sign-changing solutions; truncation techniques; SCHRODINGER-EQUATIONS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; NODAL SOLUTIONS;
D O I
10.3934/dcdss.2020454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasilinear elliptic equations, including the following Modified Nonlinear Schrodinger Equation as a special example: {Delta u + 1/2 u Delta u(2) + lambda vertical bar u vertical bar(r-2 )u = 0, in Omega, u = 0 on partial derivative Omega, where Omega subset of R-N (N >= 3) is a bounded domain with smooth boundary, lambda > 0, r is an element of (2,4). We prove as lambda becomes large the existence of more and more sign-changing solutions of both positive and negative energies.
引用
收藏
页码:1779 / 1799
页数:21
相关论文
共 34 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   On the Morse indices of sign changing solutions of nonlinear elliptic problems [J].
Bartsch, T ;
Chang, KC ;
Wang, ZQ .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :655-677
[3]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[4]  
BARTSCH T., 1996, TOPOL METHOD NONL AN, V7, P115
[5]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[6]  
Brezis H., 2011, Functional Analysis
[7]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[8]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[9]   GENERAL-METHOD FOR THE SOLUTION OF NON-LINEAR SOLITON AND KINK SCHRODINGER-EQUATIONS [J].
HASSE, RW .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (01) :83-87
[10]  
Jing Y., PREPRINT