Enhanced thermal conductivity by combined fillers in polymer composites

被引:28
作者
Li, Haitong [1 ,2 ]
Chen, Wei [1 ]
Xu, Jinzao [1 ]
Li, Jia [1 ]
Gan, Lin [1 ]
Chu, Xiaodong [1 ]
Yao, Youwei [1 ]
He, Yanbing [1 ]
Li, Baohua [1 ]
Kang, Feiyu [1 ,2 ]
Du, Hongda [1 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Guangdong Prov Key Lab Thermal Management Engn &, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
关键词
Thermal conductivity; Interface thermal resistance; Combined filler; Effective medium theory; CARBON NANOTUBE; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; GRAPHENE; INTERFACE; NANOCOMPOSITES; GRAPHITE;
D O I
10.1016/j.tca.2019.04.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper reports a new way of improving the thermal conduction property of polymer composites composed of silicone rubber and combined fillers obtained by attaching spherical alumina particles to carbon fibers using spray-drying method. The experimental results showed that the thermal conductivities of the polymer composites were 16, 28, 30, 32, and 42% higher than those of composites with untreated carbon fibers at the same content. The analysis based on effective medium theory revealed that the interface thermal resistance decreases from 1.2 x 10(-6) m(2)K/W to 8.5 x 10(-7) m(2)K/W in polymer composites. It demonstrates that the combined fillers could decrease the interface thermal resistance to improve the thermal conduction property of polymer composites, and thus are promising for the development of high-performance thermally conductive products.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 40 条
[21]   The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites [J].
Mahmoodi, Mehdi ;
Arjmand, Mohammad ;
Sundararaj, Uttandaraman ;
Park, Simon .
CARBON, 2012, 50 (04) :1455-1464
[22]   Interface effect on thermal conductivity of carbon nanotube composites [J].
Nan, CW ;
Liu, G ;
Lin, YH ;
Li, M .
APPLIED PHYSICS LETTERS, 2004, 85 (16) :3549-3551
[23]   A simple model for thermal conductivity of carbon nanotube-based composites [J].
Nan, CW ;
Shi, Z ;
Lin, Y .
CHEMICAL PHYSICS LETTERS, 2003, 375 (5-6) :666-669
[24]   Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles [J].
Pan, Chen ;
Kou, Kaichang ;
Zhang, Yu ;
Li, Ziyu ;
Wu, Guanglei .
COMPOSITES PART B-ENGINEERING, 2018, 153 :1-8
[25]   Conductive polymer composites with segregated structures [J].
Pang, Huan ;
Xu, Ling ;
Yan, Ding-Xiang ;
Li, Zhong-Ming .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (11) :1908-1933
[26]   IMPROVED THERMAL-CONDUCTIVITY IN MICROELECTRONIC ENCAPSULANTS [J].
PROCTER, P ;
SOLC, J .
IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1991, 14 (04) :708-713
[27]   Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications [J].
Renteria, J. ;
Legedza, S. ;
Salgado, R. ;
Balandin, M. P. ;
Ramirez, S. ;
Saadah, M. ;
Kargar, F. ;
Balandin, A. A. .
MATERIALS & DESIGN, 2015, 88 :214-221
[28]   Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials [J].
Shahil, Khan M. F. ;
Balandin, Alexander A. .
SOLID STATE COMMUNICATIONS, 2012, 152 (15) :1331-1340
[29]   Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials [J].
Shahil, Khan M. F. ;
Balandin, Alexander A. .
NANO LETTERS, 2012, 12 (02) :861-867
[30]   Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials [J].
Warzoha, Ronald J. ;
Fleischer, Amy S. .
APPLIED ENERGY, 2015, 154 :271-276