ENUMERATION OF UNSENSED ORIENTABLE AND NON-ORIENTABLE MAPS

被引:0
作者
Krasko, E. [1 ]
Omelchenko, A. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, St Petersburg Sch Phys Math & Comp Sci, Dept Comp Sci, St Petersburg, Russia
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2019年 / 88卷 / 03期
关键词
Map; surface; orbifold; enumeration; sensed maps; unsensed maps; R-REGULAR MAPS; ROOTED MAPS; NUMBER; CENSUS; TORUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work is devoted to the problem of enumerating maps on an orientable or non-orientable surface of a given genus g up to all symmetries (so called unsensed maps). We obtain general formulas which reduce the problem of counting such maps to the problem of enumerating rooted quotient maps on orbifolds. In addition, we solve the problem of describing all cyclic orbifolds for a given orientable or non-orientable surface of fixed genus g. We also derive recurrence relations for quotient rooted maps on orbifolds that can be orientable or non-orientable surfaces with r branch points, h boundary components and g handles or cross-caps. These results allowed us to calculate the numbers of unsensed maps on orientable or non-orientable surfaces of arbitrary genus g by the number of edges.
引用
收藏
页码:885 / 890
页数:6
相关论文
共 27 条
[1]  
[Anonymous], 1985, SEL MATH SOV
[2]  
[Anonymous], 2002, ENUMERATIVE COMBINAT
[3]  
[Anonymous], 2010, LECT NOTES MATH
[4]  
[Anonymous], THESIS
[5]  
[Anonymous], ZAP NAUCHN SEM S PET
[6]  
[Anonymous], 2018, J MATH SCI-U TOKYO
[7]   THE ASYMPTOTIC NUMBER OF ROOTED MAPS ON A SURFACE [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) :244-257
[8]   THE ENUMERATION OF MAPS ON THE TORUS AND THE PROJECTIVE PLANE [J].
BENDER, EA ;
CANFIELD, ER ;
ROBINSON, RW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (03) :257-271
[9]  
Breda d'Azevedo A, 2010, DISCRETE MATH, V310, P1184