Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange

被引:13
作者
Aquino, Christian Laurence E. [1 ]
Balela, Mary Donnabelle L. [1 ]
机构
[1] Univ Philippines Diliman, Dept Min Met & Mat Engn, Sustainable Elect Mat Grp, Quezon City 1101, Philippines
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 12期
关键词
Thermal oxidation; Misting; Cr(VI) adsorption; Zn-doped hematite; Heterogenous Fenton; Hematite nanostructures; PARTICLE-SHAPE ANALYSIS; HEAVY-METALS; HYDROTHERMAL SYNTHESIS; COMBUSTION SYNTHESIS; ENHANCED ADSORPTION; MESOPOROUS HEMATITE; MAGNETIC-PROPERTIES; AQUEOUS-SOLUTIONS; NANOWIRE GROWTH; WATER;
D O I
10.1007/s42452-020-03950-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work presents a facile method of growing zinc-doped alpha-hematite (Zn-doped alpha-Fe2O3) nanostructures via thermal oxidation of Fe sheet in the presence of Zn2+ mist. Both undoped and Zn-doped alpha-Fe2O3 nanostructures exhibit blade-like morphology mixed with some nanowires. In general, smaller yet denser nanostructures are formed at higher oxidation temperatures. On the other hand, misting (water vapor) enhances the oxidation rate, leading to larger nanoblades. Raman and energy dispersive X-ray spectroscopy reveal the successful incorporation of Zn in the alpha-Fe2O3 lattice. However, excessive Zn2+ (0.01 M) promotes the formation of large Zn hydroxide chloride particles on top of the alpha-Fe2O3 nanoblades. The undoped alpha-Fe2O3 nanostructures prepared at 650 degrees C in water vapor effectively adsorb hexavalent chromium [Cr(VI)] in aqueous solution with about 95% removal efficiency. The sample oxidized in 0.005 M Zn2+ mist is also efficient in the Fenton-assisted photodegradation of methyl orange with >90% removal even after five degradation cycles.
引用
收藏
页数:16
相关论文
共 65 条
[1]   Removal of heavy metals from aqueous solutions by liquid cation exchanger in a jet loop contactor [J].
Abdel-Aziz, M. H. ;
Amin, N. K. ;
El-Ashtoukhy, E. -S. Z. .
HYDROMETALLURGY, 2013, 137 :126-132
[2]   Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation [J].
Abyaneh, Ali Salmani ;
Fazaelipoor, Mohammad Hassan .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 165 :184-187
[3]  
Adegoke H.I., 2013, SEP TECHNOL THERMODY, V31, P142, DOI DOI 10.1007/S11814-013-0204-7
[4]   Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review [J].
Al-Mamun, M. R. ;
Kader, S. ;
Islam, M. S. ;
Khan, M. Z. H. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2019, 7 (05)
[5]  
[Anonymous], 2018, Guidelines for Drinking Water Quality
[6]  
Bazrafshan E, 2014, INDIAN J CHEM TECHN, V21, P105
[7]   Iron Oxidation at Low Temperature (260-500 A°C) in Air and the Effect of Water Vapor [J].
Bertrand, N. ;
Desgranges, C. ;
Poquillon, D. ;
Lafont, M. C. ;
Monceau, D. .
OXIDATION OF METALS, 2010, 73 (1-2) :139-162
[8]   The Assessment of Cr(VI) Removal by Iron Oxide Nanosheets and Nanowires Synthesized by Thermal Oxidation of Iron in Water Vapour [J].
Budiman, Faisal ;
Kian, Tan Wai ;
Razak, Khairunisak Abdul ;
Matsuda, Atsunori ;
Lockman, Zainovia .
5TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATERIALS, MINERALS AND ENVIRONMENT (RAMM) & 2ND INTERNATIONAL POSTGRADUATE CONFERENCE ON MATERIALS, MINERAL AND POLYMER (MAMIP), 2016, 19 :586-593
[9]   Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review [J].
Burakov, Alexander E. ;
Galunin, Evgeny V. ;
Burakova, Irina V. ;
Kucherova, Anastassia E. ;
Agarwal, Shilpi ;
Tkachev, Alexey G. ;
Gupta, Vinod K. .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 148 :702-712
[10]  
Canaria Michelle Lenair, 2017, Solid State Phenomena, V266, P101, DOI 10.4028/www.scientific.net/SSP.266.101