Graduate Education in Statistics and Data Science: The Why, When, Where, Who, and What

被引:2
作者
Aerts, Marc [1 ]
Molenberghs, Geert [1 ,2 ]
Thas, Olivier [1 ,3 ,4 ]
机构
[1] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSt, BE-3590 Hasselt, Belgium
[2] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat I BioSt, B-3000 Leuven, Belgium
[3] Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Keiraville, NSW 2500, Australia
[4] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium
来源
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021 | 2021年 / 8卷
关键词
computer science; curriculum; data science; education; graduate; interdisciplinary; statistics; ACTION PLAN; CURRICULUM;
D O I
10.1146/annurev-statistics-040620-032820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Organizing a graduate program in statistics and data science raises many questions, offering a variety of opportunities while presenting a multitude of choices. The call for graduate programs in statistics and data science is overwhelming. How does it align with other (future) study programs at the secondary and postsecondary levels? What could or should be the natural home for data science in academia? Who meets the entry criteria, and who does not? Which strategic choices inevitably play a prominent role when developing a curriculum? We share our views on the why, when, where, who and what.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 23 条
[1]   Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics [J].
Cleveland, William S. .
STATISTICAL ANALYSIS AND DATA MINING, 2014, 7 (06) :414-417
[2]  
Davenport TH, 2012, HARVARD BUS REV, V90, P70
[3]   Curriculum Guidelines for Undergraduate Programs in Data Science [J].
De Veaux, Richard D. ;
Agarwal, Mahesh ;
Averett, Maia ;
Baumer, Benjamin S. ;
Bray, Andrew ;
Bressoud, Thomas C. ;
Bryant, Lance ;
Cheng, Lei Z. ;
Francis, Amanda ;
Gould, Robert ;
Kim, Albert Y. ;
Kretchmar, Matt ;
Lu, Qin ;
Moskol, Ann ;
Nolan, Deborah ;
Pelayo, Roberto ;
Raleigh, Sean ;
Sethi, Ricky J. ;
Sondjaja, Mutiara ;
Tiruviluamala, Neelesh ;
Uhlig, Paul X. ;
Washington, Talitha M. ;
Wesley, Curtis L. ;
White, David ;
Ye, Ping .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 4, 2017, 4 :15-30
[4]   50 Years of Data Science [J].
Donoho, David .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) :745-766
[5]   The Algorithmic Foundations of Differential Privacy [J].
Dwork, Cynthia ;
Roth, Aaron .
FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2013, 9 (3-4) :211-406
[6]   Teaching Ethics in a Statistics Curriculum with a Cross-Cultural Emphasis [J].
Elliott, Alan C. ;
Stokes, S. Lynne ;
Cao, Jing .
AMERICAN STATISTICIAN, 2018, 72 (04) :359-367
[7]  
Hallinen J., 2019, ENCY BRITANNICA
[8]   Data Science in Statistics Curricula: Preparing Students to "Think with Data" [J].
Hardin, J. ;
Hoerl, R. ;
Horton, Nicholas J. ;
Nolan, D. ;
Baumer, B. ;
Hall-Holt, O. ;
Murrell, P. ;
Peng, R. ;
Roback, P. ;
Lang, D. Temple ;
Ward, M. D. .
AMERICAN STATISTICIAN, 2015, 69 (04) :343-353
[9]  
Heinemann B., 2018, P 18 KOL CALL INT C, P1, DOI [DOI 10.5445/KSP/1000087327/28, 10.1145/3279720.3279737, DOI 10.1145/3279720.3279737]
[10]  
Hernan M.A., 2019, CHANCE, V32, P42, DOI DOI 10.1080/09332480.2019.1579578