Experiments and numerical simulations of low-velocity impact of sandwich composite panels

被引:26
|
作者
Zhang, Taotao [1 ]
Yan, Ying [1 ]
Li, Jianfeng [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
关键词
DAMAGE; COMPRESSION; PREDICTION;
D O I
10.1002/pc.23623
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article investigates the response of composite sandwich panel with Nomex honeycomb core subjected to low-velocity impact and compression after impact (CAI) by using the methods of experiments and numerical simulations. Low-velocity impact of sandwich panels at five energy levels is carried out to research the damage resistance and tolerance. A failure model based on Hashin failure criterion is implemented to model the intralaminar damage behavior of laminated plies in the numerical simulation. The cohesive zone model is used to simulate the delamination damage between adjacent laminated plies. The honeycomb core behavior is defined as an elastic-plastic material. Good agreements, in terms of contact-force histories, damage shapes, and indentation depths of the sandwich panels, are observed between the experimental and numerical results. During CAI analysis, the damaged panels present a phenomenon of quick crack propagation from impact indentation location to each unloaded side after the structural strength reached. It is found that the in-plane compressive strength of damaged sandwich panels is almost 25-35% reduction than that of undamaged panels. POLYM. COMPOS., 38:646-656, 2017. (c) 2015 Society of Plastics Engineers
引用
收藏
页码:646 / 656
页数:11
相关论文
共 50 条
  • [1] Low-velocity impact response of composite sandwich panels
    Zhu, Shengqing
    Chai, Gin Boay
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2016, 230 (02) : 388 - 399
  • [2] Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: Experimental and numerical analyses
    Morada, G.
    Ouadday, R.
    Vadean, A.
    Boukhili, R.
    COMPOSITES PART B-ENGINEERING, 2017, 114 : 418 - 431
  • [3] EXPERIMENTAL, ANALYTICAL, AND NUMERICAL STUDIES OF COMPOSITE SANDWICH PANELS UNDER LOW-VELOCITY IMPACT LOADINGS
    Shokrieh, M. M.
    Fakhar, M. N.
    MECHANICS OF COMPOSITE MATERIALS, 2012, 47 (06) : 643 - 658
  • [4] Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels
    Wang, Jie
    Waas, Anthony M.
    Wang, Hai
    COMPOSITE STRUCTURES, 2013, 96 : 298 - 311
  • [5] A modified new analytical model for low-velocity impact response of circular composite sandwich panels
    Feli, S.
    Khodadadian, S.
    Safari, M.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2016, 18 (05) : 552 - 578
  • [6] Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram
    Lee, Jae-Youl
    Shin, Kwang-Bok
    Jeong, Jong-Cheol
    ADVANCED COMPOSITE MATERIALS, 2009, 18 (01) : 1 - 20
  • [7] Stiffened composite plates as equivalent structures for sandwich panels under low-velocity hail impact
    Lalisani, Abdolbaset
    Sadighi, Mojtaba
    Goudarzi, Taha
    Alderliesten, Rene
    Hedayati, Reza
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025,
  • [8] Low-velocity impact of sandwich composite plates
    Gustin, J
    Mahinfalah, M
    Jazar, GN
    Aagaah, MR
    EXPERIMENTAL MECHANICS, 2004, 44 (06) : 574 - 583
  • [9] Low-velocity impact of sandwich composite plates
    J. Gustin
    M. Mahinfalah
    G. Nakhaie Jazar
    M. R. Aagaah
    Experimental Mechanics, 2004, 44 (6) : 574 - 583
  • [10] Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core
    Ivanez, Ines
    Sanchez-Saez, Sonia
    COMPOSITE STRUCTURES, 2013, 106 : 716 - 723