Prediction carbon dioxide solubility in ionic liquids based on deep learning

被引:31
作者
Deng, Tong [1 ]
Liu, Feng-hai [1 ]
Jia, Guo-zhu [1 ]
机构
[1] Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu, Sichuan, Peoples R China
关键词
Ionic liquids; carbon dioxide; solubility; deep learning; NEURAL-NETWORKS; CONNECTIONIST MODEL; CO2; SOLUBILITY; PRESSURE; TF2N;
D O I
10.1080/00268976.2019.1652367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids have a great potential in capture and separation of carbon dioxide (CO2), and the solubility of CO2 in ionic liquids is one of key data for engineering applications. In this paper, the critical properties of ionic liquids are combined with deep learning models (CP-DNN, CP-CNN, CP-RNN) to establish theoretical prediction models of CO2 solubility in ionic liquids. The predictive performance of these framworks is able to meet or exceed the predicted effects of the method based on thermodynamic models (PR,SRK) and machine learning method (XGBoost). For CP-RNN, the coefficient of determination (R-2) between experimental and predicted values is 0.988, CP-CNN is 0.999, and CP-DNN is 0.984. This research can avoid complex computational characterisation, it is to provide a theoretical method to further enrich and improve the data information analysis of the solubility of CO2 in ionic liquids.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
Ahmadi MA., 2015, Petroleum, V1, P118, DOI [DOI 10.1016/J.PETLM.2015.06.004, 10.1016/j.petlm.2015.06.004]
[2]   Development of robust model to estimate gas-oil interfacial tension using least square support vector machine: Experimental and modeling study [J].
Ahmadi, Mohammad Ali ;
Mahmoudi, Behnam .
JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 107 :122-128
[3]   Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications [J].
Ahmadi, Mohammad Ali .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[4]   Robust intelligent tool for estimating dew point pressure in retrograded condensate gas reservoirs: Application of particle swarm optimization [J].
Ahmadi, Mohammad Ali ;
Ebadi, Mohammad ;
Yazdanpanah, Arash .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 :7-19
[5]   Evolving Connectionist Model to Monitor the Efficiency of an In Situ Combustion Process: Application to Heavy Oil Recovery [J].
Ahmadi, Mohammad Ali ;
Masoumi, Mohammad ;
Askarinezhad, Reza .
ENERGY TECHNOLOGY, 2014, 2 (9-10) :811-818
[6]   Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs [J].
Ahmadi, Mohammad Ali ;
Ebadi, Mohammad ;
Marghmaleki, Payam Soleimani ;
Fouladi, Mohammad Mahboubi .
FUEL, 2014, 124 :241-257
[7]   Evolving smart approach for determination dew point pressure through condensate gas reservoirs [J].
Ahmadi, Mohammad Ali ;
Ebadi, Mohammad .
FUEL, 2014, 117 :1074-1084
[8]   Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm [J].
Ahmadi M.A. .
Journal of Petroleum Exploration and Production Technology, 2011, 1 (2-4) :99-106
[9]   New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept [J].
Ahmadi, Mohammad Ali ;
Shadizadeh, Seyed Reza .
FUEL, 2012, 102 :716-723
[10]   Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence [J].
Ahmadi, Mohammad-Ali ;
Ahmadi, Mohammad Reza ;
Hosseini, Seyed Moein ;
Ebadi, Mohammad .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 :183-200