INVERSE PROBLEMS FOR THE STURM-LIOUVILLE EQUATION WITH THE DISCONTINUOUS COEFFICIENT

被引:2
作者
Nabiev, Anar Adiloglu [1 ]
Gurdal, Mehmet [2 ]
Saltan, Suna [2 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
[2] Suleyman Demirel Univ, Fac Sci, Dept Math, TR-32260 Isparta, Turkey
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 02期
关键词
Sturm-Louville equation; boundary value problems; spectral analysis of ordinary differential operators; transformation operator; integral representation; asymptotic formulas for eigenvalues; expansion formula; BOUNDARY-VALUE-PROBLEMS; EIGENVALUE PROBLEMS; SINGULAR POTENTIALS; SPECTRAL PROBLEMS; WAVE SPEED; OPERATORS; INTERVAL; SCATTERING; IMPEDANCE;
D O I
10.11948/2017035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study we derive the Gelfand-Levitan-Marchenko type main integral equation of the inverse problem for the boundary value problem L and prove the uniquely solvability of the main integral equation. Further, we give the solution of the inverse problem by the spectral data and by two spectrum.
引用
收藏
页码:559 / 580
页数:22
相关论文
共 44 条