Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case

被引:78
作者
Brasco, Lorenzo [1 ,2 ]
Lindgren, Erik [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Fractional p-Laplacian; Nonlocal elliptic equations; Besov regularity;
D O I
10.1016/j.aim.2016.03.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for p >= 2, solutions of equations modeled by the fractional p-Laplacian improve their regularity on the scale of fractional Sobolev spaces. Moreover, under certain precise conditions, they are in W-loc(1,p) and their gradients are in a fractional Sobolev space as well. The relevant estimates are stable as the fractional order of differentiation s reaches 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:300 / 354
页数:57
相关论文
共 29 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[3]  
[Anonymous], REV MAT IBE IN PRESS
[4]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[5]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[6]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[7]  
Brasco L., 2016, ADV CALC VA IN PRESS
[8]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[9]  
Chasseigne E., 2015, PREPRINT
[10]  
Cozzi M., 2015, PREPRINT