A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications

被引:88
作者
Antoniewicz, Maciek R. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Metab Engn & Syst Biol Lab, Ann Arbor, MI 48109 USA
关键词
Metabolic flux analysis; Flux balance analysis; Metabolism; Metabolic network model; Stable-isotope tracers; Systems biology; PARALLEL LABELING EXPERIMENTS; MASS ISOTOPOMER DISTRIBUTIONS; BIDIRECTIONAL REACTION STEPS; ESCHERICHIA-COLI; CELLULAR-METABOLISM; NETWORK MODEL; UNITS EMU; CHO-CELLS; GROWTH; PATHWAY;
D O I
10.1016/j.ymben.2020.11.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The field of metabolic engineering is primarily concerned with improving the biological production of valueadded chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, "Metabolic fluxes and metabolic engineering" (Metabolic Engineering, 1: 1-11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. C-13-metabolic flux analysis (C-13-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 133 条
[51]   The systems biology markup language (SBML):: a medium for representation and exchange of biochemical network models [J].
Hucka, M ;
Finney, A ;
Sauro, HM ;
Bolouri, H ;
Doyle, JC ;
Kitano, H ;
Arkin, AP ;
Bornstein, BJ ;
Bray, D ;
Cornish-Bowden, A ;
Cuellar, AA ;
Dronov, S ;
Gilles, ED ;
Ginkel, M ;
Gor, V ;
Goryanin, II ;
Hedley, WJ ;
Hodgman, TC ;
Hofmeyr, JH ;
Hunter, PJ ;
Juty, NS ;
Kasberger, JL ;
Kremling, A ;
Kummer, U ;
Le Novère, N ;
Loew, LM ;
Lucio, D ;
Mendes, P ;
Minch, E ;
Mjolsness, ED ;
Nakayama, Y ;
Nelson, MR ;
Nielsen, PF ;
Sakurada, T ;
Schaff, JC ;
Shapiro, BE ;
Shimizu, TS ;
Spence, HD ;
Stelling, J ;
Takahashi, K ;
Tomita, M ;
Wagner, J ;
Wang, J .
BIOINFORMATICS, 2003, 19 (04) :524-531
[52]   Multiple high-throughput analyses monitor the response of E-coli to perturbations [J].
Ishii, Nobuyoshi ;
Nakahigashi, Kenji ;
Baba, Tomoya ;
Robert, Martin ;
Soga, Tomoyoshi ;
Kanai, Akio ;
Hirasawa, Takashi ;
Naba, Miki ;
Hirai, Kenta ;
Hoque, Aminul ;
Ho, Pei Yee ;
Kakazu, Yuji ;
Sugawara, Kaori ;
Igarashi, Saori ;
Harada, Satoshi ;
Masuda, Takeshi ;
Sugiyama, Naoyuki ;
Togashi, Takashi ;
Hasegawa, Miki ;
Takai, Yuki ;
Yugi, Katsuyuki ;
Arakawa, Kazuharu ;
Iwata, Nayuta ;
Toya, Yoshihiro ;
Nakayama, Yoichi ;
Nishioka, Takaaki ;
Shimizu, Kazuyuki ;
Mori, Hirotada ;
Tomita, Masaru .
SCIENCE, 2007, 316 (5824) :593-597
[53]   OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis [J].
Kajihata, Shuichi ;
Furusawa, Chikara ;
Matsuda, Fumio ;
Shimizu, Hiroshi .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[54]   A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains [J].
Khodayari, Ali ;
Maranas, Costas D. .
NATURE COMMUNICATIONS, 2016, 7
[55]   RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations [J].
Kim, Joonhoon ;
Reed, Jennifer L. .
GENOME BIOLOGY, 2012, 13 (09) :R78
[56]   Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches [J].
Lagziel, Shoval ;
Lee, Won Dong ;
Shlomi, Tomer .
BMC BIOLOGY, 2019, 17 (1)
[57]   APPLICATION OF METABOLIC FLUX ANALYSIS IN METABOLIC ENGINEERING [J].
Lee, Sang Yup ;
Park, Jong Myoung ;
Kim, Tae Yong .
SYNTHETIC BIOLOGY, PT B: COMPUTER AIDED DESIGN AND DNA ASSEMBLY, 2011, 498 :67-93
[58]   COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis [J].
Leighty, Robert W. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2013, 20 :56-62
[59]   Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis [J].
Leighty, Robert W. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2012, 14 (05) :533-541
[60]   Dynamic metabolic flux analysis (DMFA): A framework for determining fluxes at metabolic non-steady state [J].
Leighty, Robert W. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2011, 13 (06) :745-755