Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels

被引:240
作者
Cui, J
Cox, DH
Aldrich, RW
机构
[1] STANFORD UNIV, DEPT CELLULAR & MOL PHYSIOL, STANFORD, CA 94305 USA
[2] STANFORD UNIV, HOWARD HUGHES MED INST, STANFORD, CA 94305 USA
关键词
mslo; BK channel; voltage dependence; Ca2+ binding; gating;
D O I
10.1085/jgp.109.5.647
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca](i)). Activation rates increased with voltage and with [Ca](i), and approached saturation at high [Ca](i). Deactivation rates generally decreased with [Ca](i) and voltage, and approached saturation at high [Ca](i). Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted left ward along the voltage axis with increasing [Ca](i). G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca](i) varied between 0.84 and 1,000 mu M. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca](i). (b) The macroscopic rate constant of activation approaches saturation at high [Ca](i) but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.
引用
收藏
页码:647 / 673
页数:27
相关论文
共 90 条
[1]  
Adair GS, 1925, J BIOL CHEM, V63, P529
[2]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[3]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[4]  
[Anonymous], 1910, J. Physiol., DOI [DOI 10.1017/CBO9781107415324.004, DOI 10.1113/JPHYSIOL.1910.SP001386]
[5]   THE CALCIUM-ACTIVATED POTASSIUM CHANNELS OF TURTLE HAIR-CELLS [J].
ART, JJ ;
WU, YC ;
FETTIPLACE, R .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (01) :49-72
[6]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[7]   PROPERTIES OF SINGLE CALCIUM-ACTIVATED POTASSIUM CHANNELS IN CULTURED RAT MUSCLE [J].
BARRETT, JN ;
MAGLEBY, KL ;
PALLOTTA, BS .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 331 (OCT) :211-230
[8]  
BLAIR LAC, 1985, NATURE, V315, P329, DOI 10.1038/315329a0
[9]   MSLO, A COMPLEX MOUSE GENE ENCODING MAXI CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BUTLER, A ;
TSUNODA, S ;
MCCOBB, DP ;
WEI, A ;
SALKOFF, L .
SCIENCE, 1993, 261 (5118) :221-224
[10]   EFFECT OF CHANGING INTERNAL SOLUTION ON SODIUM INACTIVATION AND RELATED PHENOMENA IN GIANT AXONS [J].
CHANDLER, WK ;
HODGKIN, AL ;
MEVES, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1965, 180 (04) :821-&