Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

被引:22
作者
Kassu, Aschalew [1 ]
Farley, Carlton, III [2 ]
Sharma, Anup [2 ]
Kim, Wonkyu [3 ]
Guo, Junpeng [3 ]
机构
[1] Alabama A&M Univ, Dept Engn Construct Management & Ind Tech, Normal, AL 35762 USA
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
关键词
surface enhanced Raman scattering; sensing; nanoporous substrates; anodic aluminum oxide; chemical sensor; optical sensor; ceramic membranes; PLASMON RESONANCE; NANOROD ARRAYS; NANOPARTICLES; SERS; MEMBRANES; MELAMINE; MILK; AU;
D O I
10.3390/s151229778
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.
引用
收藏
页码:29924 / 29937
页数:14
相关论文
共 35 条
[1]   Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films [J].
Brolo, AG ;
Gordon, R ;
Leathem, B ;
Kavanagh, KL .
LANGMUIR, 2004, 20 (12) :4813-4815
[2]   ZnO/Au Composite Nanoarrays As Substrates for Surface-Enbanced Raman Scattering Detection [J].
Chen, Limiao ;
Luo, Linbao ;
Chen, Zhenhua ;
Zhang, Mingliang ;
Zapien, Juan Antonio ;
Lee, Chun Sing ;
Lee, Shuit Tong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (01) :93-100
[3]   Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus [J].
Deng, Jiajia ;
Toh, Chee-Seng .
SENSORS, 2013, 13 (06) :7774-7785
[4]   Fingerprinting food: current technologies for the detection of food adulteration and contamination [J].
Ellis, David I. ;
Brewster, Victoria L. ;
Dunn, Warwick B. ;
Allwood, J. William ;
Golovanov, Alexander P. ;
Goodacre, Royston .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (17) :5706-5727
[5]   Gold-Coated Nanorod Arrays as Highly Sensitive Substrates for Surface-Enhanced Raman Spectroscopy [J].
Fan, J. -G. ;
Zhao, Y. -P. .
LANGMUIR, 2008, 24 (24) :14172-14175
[6]   Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe [J].
Fan, Meikun ;
Lai, Feng-Ju ;
Chou, Hung-Lung ;
Lu, Wan-Ting ;
Hwang, Bing-Joe ;
Brolo, Alexandre G. .
CHEMICAL SCIENCE, 2013, 4 (01) :509-515
[7]   A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J].
Fan, Meikun ;
Andrade, Gustavo F. S. ;
Brolo, Alexandre G. .
ANALYTICA CHIMICA ACTA, 2011, 693 (1-2) :7-25
[8]   Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering [J].
Giovannozzi, Andrea Mario ;
Rolle, Francesca ;
Sega, Michela ;
Abete, Maria Cesarina ;
Marchis, Daniela ;
Rossi, Andrea Mario .
FOOD CHEMISTRY, 2014, 159 :250-256
[9]   Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS) [J].
Gopinath, Ashwin ;
Boriskina, Svetlana V. ;
Reinhard, Bjoern M. ;
Dal Negro, Luca .
OPTICS EXPRESS, 2009, 17 (05) :3741-3753
[10]   Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation [J].
Herrera, Gloria M. ;
Padilla, Amira C. ;
Hernandez-Rivera, Samuel P. .
NANOMATERIALS, 2013, 3 (01) :158-172