Algorithms for generalized numerical semigroups

被引:10
|
作者
Cisto, Carmelo [1 ]
Delgado, Manuel [2 ]
Garcia-Sanchez, Pedro A. [3 ,4 ]
机构
[1] Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Granada, Dept Algebra, Granada 18017, Spain
[4] Univ Granada, IEMath GR, Granada 18017, Spain
关键词
Generalized numerical semigroup; gaps; minimal generators; genus; NUMBER;
D O I
10.1142/S0219498821500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide algorithms for performing computations in generalized numerical semigroups, that is, submonoids of N-d with finite complement in N-d. These semigroups are affine semigroups, which in particular implies that they are finitely generated. For a given finite set of elements in N-d we show how to deduce if the monoid spanned by this set is a generalized numerical semigroup and, if so, we calculate its set of gaps. Also, given a finite set of elements in N-d we can determine if it is the set of gaps of a generalized numerical semigroup and, if so, compute the minimal generators of this monoid. We provide a new algorithm to compute the set of all generalized numerical semigroups with a prescribed genus (the cardinality of their sets of gaps). Its implementation allowed us to compute (for various dimensions) the number of numerical semigroups of higher genus than has previously been computed.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] The Frobenius problem for repunit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    RAMANUJAN JOURNAL, 2016, 40 (02) : 323 - 334
  • [42] Numerical semigroups generated by quadratic sequences
    Mara Hashuga
    Megan Herbine
    Alathea Jensen
    Semigroup Forum, 2022, 104 : 330 - 357
  • [43] The set of numerical semigroups of a given genus
    Blanco, V.
    Rosales, J. C.
    SEMIGROUP FORUM, 2012, 85 (02) : 255 - 267
  • [44] Ratio-Covarieties of Numerical Semigroups
    Moreno-Frias, Maria angeles
    Rosales, Jose Carlos
    AXIOMS, 2024, 13 (03)
  • [45] The Frobenius problem for a class of numerical semigroups
    Gu, Ze
    Tang, Xilin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1335 - 1347
  • [46] The Frobenius problem for Thabit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    JOURNAL OF NUMBER THEORY, 2015, 155 : 85 - 99
  • [47] The Frobenius problem for repunit numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    The Ramanujan Journal, 2016, 40 : 323 - 334
  • [48] Constructing numerical semigroups of a given genus
    Yufei Zhao
    Semigroup Forum, 2010, 80 : 242 - 254
  • [49] Factorization length distribution for affine semigroups I: Numerical semigroups with three generators
    Garcia, Stephan Ramon
    O'Neill, Christopher
    Yih, Samuel
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 78 : 190 - 204
  • [50] Counting the numerical semigroups with a specific special gap
    Moreno-Frias, M. A.
    Rosales, J. C.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) : 5132 - 5144