Algorithms for generalized numerical semigroups

被引:10
|
作者
Cisto, Carmelo [1 ]
Delgado, Manuel [2 ]
Garcia-Sanchez, Pedro A. [3 ,4 ]
机构
[1] Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Granada, Dept Algebra, Granada 18017, Spain
[4] Univ Granada, IEMath GR, Granada 18017, Spain
关键词
Generalized numerical semigroup; gaps; minimal generators; genus; NUMBER;
D O I
10.1142/S0219498821500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide algorithms for performing computations in generalized numerical semigroups, that is, submonoids of N-d with finite complement in N-d. These semigroups are affine semigroups, which in particular implies that they are finitely generated. For a given finite set of elements in N-d we show how to deduce if the monoid spanned by this set is a generalized numerical semigroup and, if so, we calculate its set of gaps. Also, given a finite set of elements in N-d we can determine if it is the set of gaps of a generalized numerical semigroup and, if so, compute the minimal generators of this monoid. We provide a new algorithm to compute the set of all generalized numerical semigroups with a prescribed genus (the cardinality of their sets of gaps). Its implementation allowed us to compute (for various dimensions) the number of numerical semigroups of higher genus than has previously been computed.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Numerical semigroups II: Pseudo-symmetric AA-semigroups
    Garcia-Marco, Ignacio
    Alfonsin, Jorge L. Ramirez
    Rodseth, Oystein J.
    JOURNAL OF ALGEBRA, 2017, 470 : 484 - 498
  • [32] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383
  • [33] On Integer Partitions Corresponding to Numerical Semigroups
    Hannah E. Burson
    Hayan Nam
    Simone Sisneros-Thiry
    Results in Mathematics, 2023, 78
  • [34] The Frobenius problem for Mersenne numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    Mathematische Zeitschrift, 2017, 286 : 741 - 749
  • [35] Constructing numerical semigroups of a given genus
    Zhao, Yufei
    SEMIGROUP FORUM, 2010, 80 (02) : 242 - 254
  • [36] On Integer Partitions Corresponding to Numerical Semigroups
    Burson, Hannah E.
    Nam, Hayan
    Sisneros-Thiry, Simone
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [37] The Frobenius problem for Mersenne numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 741 - 749
  • [38] Second-Level Numerical Semigroups
    Llena, David
    Rosales, Jose Carlos
    MATHEMATICS, 2025, 13 (04)
  • [39] NUMERICAL SEMIGROUPS BOUNDED BY A CYCLIC MONOID
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1219 - 1231
  • [40] The set of numerical semigroups of a given genus
    V. Blanco
    J. C. Rosales
    Semigroup Forum, 2012, 85 : 255 - 267