Algorithms for generalized numerical semigroups

被引:10
|
作者
Cisto, Carmelo [1 ]
Delgado, Manuel [2 ]
Garcia-Sanchez, Pedro A. [3 ,4 ]
机构
[1] Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Granada, Dept Algebra, Granada 18017, Spain
[4] Univ Granada, IEMath GR, Granada 18017, Spain
关键词
Generalized numerical semigroup; gaps; minimal generators; genus; NUMBER;
D O I
10.1142/S0219498821500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide algorithms for performing computations in generalized numerical semigroups, that is, submonoids of N-d with finite complement in N-d. These semigroups are affine semigroups, which in particular implies that they are finitely generated. For a given finite set of elements in N-d we show how to deduce if the monoid spanned by this set is a generalized numerical semigroup and, if so, we calculate its set of gaps. Also, given a finite set of elements in N-d we can determine if it is the set of gaps of a generalized numerical semigroup and, if so, compute the minimal generators of this monoid. We provide a new algorithm to compute the set of all generalized numerical semigroups with a prescribed genus (the cardinality of their sets of gaps). Its implementation allowed us to compute (for various dimensions) the number of numerical semigroups of higher genus than has previously been computed.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] The Frobenius problem for numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2310 - 2319
  • [22] Parametrizing Arf numerical semigroups
    Garcia-Sanchez, P. A.
    Heredia, B. A.
    Karaka, H. I.
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (11)
  • [23] BOUNDS FOR THE GENUS OF NUMERICAL SEMIGROUPS
    Leher, Eli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 827 - 834
  • [24] Numerical semigroups with concentration two
    Rosales, Jose C.
    Branco, M. B.
    Traesel, Marcio A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 303 - 313
  • [25] Modularly equidistant numerical semigroups
    ROSALES, Jose Carlos
    BRANCO, Manuel Baptista
    TRAESEL, Marcio Andre
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 288 - 299
  • [26] ON THE FROBENIUS PROBLEM OF NUMERICAL SEMIGROUPS
    Leher, Eli
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 639 - 649
  • [27] Generalized Weierstrass semigroups and their Poincare series
    Moyano-Fernandez, J. J.
    Tenorio, W.
    Torres, F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 58 : 46 - 69
  • [28] Distribution of odd and even elements in gap sets of numerical semigroups
    Cho, Hyunsoo
    Lee, Kyeongjun
    Nam, Hayan
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [29] p-Numerical semigroups with p-symmetric properties
    Komatsu, Takao
    Ying, Haotian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (13)
  • [30] On the generators of a generalized numerical semigroup
    Cisto, Carmelo
    Failla, Gioia
    Utano, Rosanna
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (01): : 49 - 59