Algorithms for generalized numerical semigroups

被引:10
|
作者
Cisto, Carmelo [1 ]
Delgado, Manuel [2 ]
Garcia-Sanchez, Pedro A. [3 ,4 ]
机构
[1] Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Granada, Dept Algebra, Granada 18017, Spain
[4] Univ Granada, IEMath GR, Granada 18017, Spain
关键词
Generalized numerical semigroup; gaps; minimal generators; genus; NUMBER;
D O I
10.1142/S0219498821500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide algorithms for performing computations in generalized numerical semigroups, that is, submonoids of N-d with finite complement in N-d. These semigroups are affine semigroups, which in particular implies that they are finitely generated. For a given finite set of elements in N-d we show how to deduce if the monoid spanned by this set is a generalized numerical semigroup and, if so, we calculate its set of gaps. Also, given a finite set of elements in N-d we can determine if it is the set of gaps of a generalized numerical semigroup and, if so, compute the minimal generators of this monoid. We provide a new algorithm to compute the set of all generalized numerical semigroups with a prescribed genus (the cardinality of their sets of gaps). Its implementation allowed us to compute (for various dimensions) the number of numerical semigroups of higher genus than has previously been computed.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Algorithms and basic asymptotics for generalized numerical semigroups in N
    Failla, Gioia
    Peterson, Chris
    Utano, Rosanna
    SEMIGROUP FORUM, 2016, 92 (02) : 460 - 473
  • [2] The Corner Element of Generalized Numerical Semigroups
    Bernardini, Matheus
    Tenorio, Wanderson
    Tizziotti, Guilherme
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [3] The Corner Element of Generalized Numerical Semigroups
    Matheus Bernardini
    Wanderson Tenório
    Guilherme Tizziotti
    Results in Mathematics, 2022, 77
  • [4] Generalized perfect numerical semigroups
    Zmmo, Mohammad
    Tutas, Nesrin
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 150 - 162
  • [5] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Branco, Manuel B.
    Colaco, Isabel
    Ojeda, Ignacio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [6] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Manuel B. Branco
    Isabel Colaço
    Ignacio Ojeda
    Mediterranean Journal of Mathematics, 2023, 20
  • [7] On atoms of the set of generalized numerical semigroups with fixed corner element
    Bernardini, Matheus
    Castellanos, Alonso S.
    Tenorio, Wanderson
    Tizziotti, Guilherme
    SEMIGROUP FORUM, 2024, 108 (01) : 1 - 19
  • [8] Counting Numerical Semigroups
    Kaplan, Nathan
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (09) : 862 - 875
  • [9] On atoms of the set of generalized numerical semigroups with fixed corner element
    Matheus Bernardini
    Alonso S. Castellanos
    Wanderson Tenório
    Guilherme Tizziotti
    Semigroup Forum, 2024, 108 : 1 - 19
  • [10] Numerical Semigroups with a Fixed Fundamental Gap
    Moreno-Frias, Maria angeles
    Rosales, Jose Carlos
    MATHEMATICS, 2025, 13 (01)