Recursive Test of Hardy-Weinberg Equilibrium in Tetraploids

被引:11
|
作者
Sun, Lidan [1 ,2 ]
Gan, Jingwen [1 ,3 ]
Jiang, Libo [1 ,3 ]
Wu, Rongling [1 ,3 ,4 ,5 ]
机构
[1] Beijing Forestry Univ, Beijing Adv Innovat Ctr Tree Breeding Mol Design, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Natl Engn Res Ctr Floriculture, Beijing Lab Urban & Rural Ecol Environm, Sch Landscape Architecture,Beijing Key Lab Orname, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Coll Biol Sci & Technol, Ctr Computat Biol, Beijing 100083, Peoples R China
[4] Penn State Univ, Ctr Stat Genet, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[5] Penn State Univ, Ctr Stat Genet, Dept Stat, Hershey, PA 17033 USA
基金
中国国家自然科学基金;
关键词
GENOTYPING ERRORS; DOUBLE REDUCTION; GENOME-WIDE; PROPORTIONS; DISEQUILIBRIUM; ASSOCIATION; SEGREGATION; POLYPLOIDY; DEVIATIONS; GENETICS;
D O I
10.1016/j.tig.2020.11.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Testing for deviations from Hardy-Weinberg equilibrium (HWE) can provide fundamental information about genetic variation and evolutionary processes in natural populations. In contrast to diploids, where genotype frequencies remain constant after a single episode of random mating, polyploids, characterized by polysomic inheritance, approach HWE gradually. Here, we mathematically show the asymptotic trajectory of tetraploid equilibrium from any initial genotype frequencies. We formulate a statistical framework to test and estimate the degree of deviation from HWE at individual loci in allotetraploids and autotetraploids. Knowledge about HWE test fills an important gap in population genetic studies of tetraploids related to their evolution and ecology.
引用
收藏
页码:504 / 513
页数:10
相关论文
共 50 条
  • [41] TESTING FOR HARDY-WEINBERG EQUILIBRIUM IN SMALL SAMPLES
    ELSTON, RC
    FORTHOFER, R
    BIOMETRICS, 1977, 33 (03) : 536 - 542
  • [42] Bayesian Methods for Examining Hardy-Weinberg Equilibrium
    Wakefield, Jon
    BIOMETRICS, 2010, 66 (01) : 257 - 265
  • [43] Effect of spatial constraints on Hardy-Weinberg equilibrium
    Chen, Yi-Shin
    Su, Yi-Cheng
    Pan, Wei
    SCIENTIFIC REPORTS, 2016, 6
  • [44] G.H. Hardy (1908) and Hardy-Weinberg equilibrium
    Edwards, A. W. F.
    GENETICS, 2008, 179 (03) : 1143 - 1150
  • [45] G.H. Hardy and Hardy-Weinberg equilibrium (1908)
    Edwards, A. W. F.
    ANNALS OF HUMAN GENETICS, 2008, 72 : 687 - 688
  • [46] CONSIDERATION OF CHI-SQUARE TEST OF HARDY-WEINBERG EQUILIBRIUM IN A NONMULTINOMIAL SITUATION
    SING, CF
    ROTHMAN, ED
    ANNALS OF HUMAN GENETICS, 1975, 39 (OCT) : 141 - 145
  • [47] A model-embedded trend test with incorporating Hardy-Weinberg equilibrium information
    Xiaonan Hu
    Xiaogang Duan
    Dongdong Pan
    Sanguo Zhang
    Qizhai Li
    Journal of Systems Science and Complexity, 2017, 30 : 101 - 110
  • [48] A Model-Embedded Trend Test with Incorporating Hardy-Weinberg Equilibrium Information
    Hu Xiaonan
    Duan Xiaogang
    Pan Dongdong
    Zhang Sanguo
    Li Qizhai
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (01) : 101 - 110
  • [49] A Bayesian test for Hardy-Weinberg equilibrium of biallelic X-chromosomal markers
    Puig, X.
    Ginebra, J.
    Graffelman, J.
    HEREDITY, 2017, 119 (04) : 226 - 236
  • [50] A Model-Embedded Trend Test with Incorporating Hardy-Weinberg Equilibrium Information
    HU Xiaonan
    DUAN Xiaogang
    PAN Dongdong
    ZHANG Sanguo
    LI Qizhai
    JournalofSystemsScience&Complexity, 2017, 30 (01) : 101 - 110