Influence of HSiO1.5 Sol-Gel Polymer Structure and Composition on the Size and Luminescent Properties of Silicon Nanocrystals

被引:100
作者
Henderson, Eric J. [1 ]
Kelly, Joel A. [1 ]
Veinot, Jonathan G. C. [1 ]
机构
[1] Univ Alberta, Dept Chem, Edmonton, AB, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
HYDROGEN SILSESQUIOXANE; THIN-FILMS; AMORPHOUS-SILICON; SIO2; MATRIX; PRECURSORS; PYROLYSIS; CHEMISTRY; SURFACE; FUNCTIONALIZATION; PHOTOLUMINESCENCE;
D O I
10.1021/cm902028q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the preparation of SiO2-embedded silicon nanocrystals (Si-NCs) from the thermal processing of sol-gel polymers derived from trichlorosilane (HSiCl3). Straightforward addition of water to HSiCl3 generates a cross-linked (HSiO1.5)(n) sol-gel polymer suitable for the generation of bulk quantities of SiO2-embedded Si-NCs. It is shown that structural differences between the present (HSiO1.5)(n) polymer and hydrogen silsesquioxane (HSQ) result in controllable differences in the resulting oxide-embedded Si-NCs produced from these precursors. A polymer structure/NC size relationship is further delineated through the preparation and evaluation of methyl-modified (HSiO1.5)(n)(CH3SiO1.5)(m) (m << n, m + n = 1) sol-gel copolymers, in which a low concentration of methyl groups acts as a polymer network modifier and influences the formation of Si-NCs during thermal processing. Si-NC size is readily tailored by controlled variations to peak processing temperature for (HSiO1.5)(n) and composition (n and m) for (HSiO1.5)(n)(CH3SiO1.5)(m). Furthermore, the present Si-NCs exhibit size-dependent photoluminescence (PL) in accordance with the principles of quantum confinement. Freestanding Si-NCs are obtained through chemical etching of the oxide matrix and exhibit tunable PL throughout the visible spectrum.
引用
收藏
页码:5426 / 5434
页数:9
相关论文
共 45 条
[1]   A NEW ROUTE TO TRIMETHYLSILYLATED SPHEROSILICATES - SYNTHESIS AND STRUCTURE OF [SI12O18](OSIME3)12, D3H-[SI14O21](OSIME3)14, AND C2V-[SI14O21](OSIME3)14 [J].
AGASKAR, PA ;
DAY, VW ;
KLEMPERER, WG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (18) :5554-5556
[2]   Materials issues with thin film hydrogen silsesquioxane low K dielectrics [J].
Albrecht, MG ;
Blanchette, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (11) :4019-4025
[3]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[4]   SILSESQUIOXANES [J].
BANEY, RH ;
ITOH, M ;
SAKAKIBARA, A ;
SUZUKI, T .
CHEMICAL REVIEWS, 1995, 95 (05) :1409-1430
[5]  
BRODSKY MH, 1977, PHYS REV B, V16, P3556, DOI 10.1103/PhysRevB.16.3556
[6]   LUMINESCENCE OF SILICON MATERIALS - CHAINS, SHEETS, NANOCRYSTALS, NANOWIRES, MICROCRYSTALS, AND POROUS SILICON [J].
BRUS, L .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (14) :3575-3581
[7]   Organometallic chemistry on silicon and germanium surfaces [J].
Buriak, JM .
CHEMICAL REVIEWS, 2002, 102 (05) :1271-1308
[8]   Pyrolysis study of a hydride-sol-gel silica [J].
Campostrini, R. ;
Sicurelli, A. ;
Ischia, M. ;
Carturan, G. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 89 (02) :633-641
[9]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[10]   Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix [J].
Chew, H. G. ;
Zheng, F. ;
Choi, W. K. ;
Chim, W. K. ;
Foo, Y. L. ;
Fitzgerald, E. A. .
NANOTECHNOLOGY, 2007, 18 (06)