Separable Degree of the Gauss Map and Strict Dual Curves Over Finite Fields

被引:2
作者
Arakelian, Nazar [1 ]
机构
[1] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2021年 / 52卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Algebraic curves; Strict dual curve; Gauss map; Finite fields;
D O I
10.1007/s00574-020-00194-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a non-degenerate projective algebraic curve and denote by X similar to its strict dual curve. The map. : X -. X similar to is called (strict) Gauss map of X. In this manuscript, we study the separable degree of the Gauss map of curves defined over finite fields. In particular, we give a generalization of a known result on the separable degree of the Gauss map of plane Frobenius nonclassical curves. We also obtain a characterization of certain plane strange curves.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 19 条