From High-Manganese Steels to Advanced High-Entropy Alloys

被引:9
|
作者
Haase, Christian [1 ]
Barrales-Mora, Luis Antonio [2 ]
机构
[1] Rhein Westfal TH Aachen, Steel Inst, Intzestr 1, D-52072 Aachen, Germany
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, 2 Rue Marconi, F-57070 Metz, France
关键词
high-manganese steels; high-entropy alloys; alloy design; plastic deformation; annealing; microstructure; texture; mechanical properties; INDUCED PLASTICITY STEELS; STACKING-FAULT ENERGIES; FE-28MN-0.28C TWIP STEEL; TEXTURE EVOLUTION; MECHANICAL-PROPERTIES; MICROSTRUCTURE; DEFORMATION; BEHAVIOR; DESIGN; MTEX;
D O I
10.3390/met9070726
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arguably, steels are the most important structural material, even to this day. Numerous design concepts have been developed to create and/or tailor new steels suited to the most varied applications. High-manganese steels (HMnS) stand out for their excellent mechanical properties and their capacity to make use of a variety of physical mechanisms to tailor their microstructure, and thus their properties. With this in mind, in this contribution, we explore the possibility of extending the alloy design concepts that haven been used successfully in HMnS to the recently introduced high-entropy alloys (HEA). To this aim, one HMnS steel and the classical HEA Cantor alloy were subjected to cold rolling and heat treatment. The evolution of the microstructure and texture during the processing of the alloys and the resulting properties were characterized and studied. Based on these results, the physical mechanisms active in the investigated HMnS and HEA were identified and discussed. The results evidenced a substantial transferability of the design concepts and more importantly, they hint at a larger potential for microstructure and property tailoring in the HEA.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An Overview on Fatigue of High-Entropy Alloys
    Hu, Junchao
    Li, Xue
    Zhao, Qiuchen
    Chen, Yangrui
    Yang, Kun
    Wang, Qingyuan
    MATERIALS, 2023, 16 (24)
  • [22] Microstructure and mechanical properties of FexCoCrNiMn high-entropy alloys
    Zhang, Tao
    Xin, Lijun
    Wu, Fufa
    Zhao, Rongda
    Xiang, Jun
    Chen, Minghua
    Jiang, Songshan
    Huang, Yongjiang
    Chen, Shunhua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (10) : 2331 - 2335
  • [23] Predicting the hardness of high-entropy alloys based on compositions
    Guo, Qingwei
    Pan, Yue
    Hou, Hua
    Zhao, Yuhong
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 112
  • [24] Boron doped ultrastrong and ductile high-entropy alloys
    Seol, Jae Bok
    Bae, Jae Wung
    Li, Zhiming
    Han, Jong Chan
    Kim, Jung Gi
    Raabe, Dierk
    Kim, Hyoung Seop
    ACTA MATERIALIA, 2018, 151 : 366 - 376
  • [25] The Study of Structural Changes in Homogenized High-Entropy Alloys
    Aripov, G. R.
    Cheverikin, V. V.
    Bazlov, A., I
    Mao, H.
    Louzguine-Luzgin, D., V
    Polkin, V., I
    Prokoshkin, S. D.
    PHYSICAL MESOMECHANICS, 2021, 24 (06) : 663 - 673
  • [26] Dynamic response of high-entropy alloys to ballistic impact
    Tang, Yunqing
    Li, D. Y.
    SCIENCE ADVANCES, 2022, 8 (32):
  • [27] Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys
    Ye, Xicong
    Xu, Weiquan
    Li, Zhe
    Xu, Dong
    Zhang, Wen
    Li, Bo
    Fang, Dong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (10) : 7820 - 7829
  • [28] New TiTaNbZrMo high-entropy alloys for metallic biomaterials
    Li, Chenwei
    Ma, Ying
    Yang, Xu
    Hou, Minghao
    MATERIALS RESEARCH EXPRESS, 2021, 8 (10)
  • [29] Microstructure and the Properties of AlFeCoNiCrSn x High-Entropy Alloys
    Sun, Z. Y.
    Zhang, J.
    Zhu, J. B.
    Li, J. C.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (11) : 8247 - 8251
  • [30] Microstructure and Mechanical Properties of CoCrFeMnNiSnx High-Entropy Alloys
    Gu, X. Y.
    Dong, Y. N.
    Zhuang, Y. X.
    Wang, J.
    METALS AND MATERIALS INTERNATIONAL, 2020, 26 (03) : 292 - 301