Grain-scale deformation in a Mg-0.8 wt% Y alloy using crystal plasticity finite element method

被引:38
作者
Li, Wenxue [1 ]
Wang, Leyun [1 ]
Zhou, Bijin [1 ]
Liu, Chuanlai [1 ]
Zeng, Xiaoqin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Engn Res Ctr Light Alloy Net Forming, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium alloys; Crystal; Plasticity finite element modeling; EBSD; Dislocation; Mechanical; Behavior; SITU NEUTRON-DIFFRACTION; MG-Y; NONBASAL SLIP; MICROSTRUCTURE; TEXTURE; MECHANISMS; SIMULATION; PREDICTION; ANISOTROPY; DUCTILITY;
D O I
10.1016/j.jmst.2019.04.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnesium (Mg) alloys with hexagonal close-packed (HCP) structure usually have a poor ductility at room temperature. The addition of yttrium (Y) can improve the ductility of Mg alloys. To understand the underlying mechanism, crystal plasticity finite element method (CPFEM) was employed to simulate the tensile deformation of a Mg-0.8 wt% Y alloy. The simulated stress-strain curve and the grain-scale slip activities were compared with an in-situ tensile test conducted in a scanning electron microscope. According to the CPFEM result, basal slip is the dominant deformation mode in the plastic deformation stage, accounting for about 50% of total strain. Prismatic slip and pyramidal (a) slip are responsible for about 25% and 20% of the total strain, respectively. Pyramidal (c + a) slip and twinning, on the other hand, accommodate much less strain. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:2200 / 2206
页数:7
相关论文
共 36 条
[1]   Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J].
Agnew, SR ;
Duygulu, Ö .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (06) :1161-1193
[2]   Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J].
Agnew, SR ;
Yoo, MH ;
Tomé, CN .
ACTA MATERIALIA, 2001, 49 (20) :4277-4289
[3]   STRAIN LOCALIZATION IN DUCTILE SINGLE-CRYSTALS [J].
ASARO, RJ ;
RICE, JR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1977, 25 (05) :309-338
[4]   The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J].
Bohlen, Jan ;
Nuernberg, Marcus R. ;
Senn, Jeremy W. ;
Letzig, Dietmar ;
Agnew, Sean R. .
ACTA MATERIALIA, 2007, 55 (06) :2101-2112
[5]   Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J].
Bridier, F ;
Villechaise, P ;
Mendez, J .
ACTA MATERIALIA, 2005, 53 (03) :555-567
[6]   Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method [J].
Choi, S. -H. ;
Kim, D. H. ;
Lee, H. W. ;
Shin, E. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (4-5) :1151-1159
[7]   Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys [J].
Gao, L. ;
Chen, R. S. ;
Han, E. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 481 (1-2) :379-384
[8]   Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method [J].
Grilli, N. ;
Janssens, K. G. F. ;
Nellessen, J. ;
Sandloebes, S. ;
Raabe, D. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 100 :104-121
[9]   Analysing single twinning events in Mg-6Zn using nanoindentation [J].
Guo, Tingting ;
Chao, Qi ;
Siska, Filip ;
Cheng, Jun ;
Varma, Rameshkumar Ramkaran ;
Barnett, Matthew R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 768 :510-516
[10]   Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets [J].
Hantzsche, K. ;
Bohlen, J. ;
Wendt, J. ;
Kainer, K. U. ;
Yi, S. B. ;
Letzig, D. .
SCRIPTA MATERIALIA, 2010, 63 (07) :725-730