Exact solutions for stochastic Bernoulli-Euler beams under deterministic loading

被引:1
|
作者
Malkiel, Nachman [1 ]
Rabinovitch, Oded [2 ]
Elishakoff, Isaac [3 ]
机构
[1] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Fac Civil & Environm Engn, Abel Wolman Chair Civil Engn, IL-32000 Haifa, Israel
[3] Florida Atlantic Univ, Dept Ocean & Mech Engn, Boca Raton, FL 33431 USA
关键词
D O I
10.1007/s00707-020-02895-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study deals with two general solutions for a simply supported linear elastic Bernoulli-Euler beam with a stochastic bending flexibility, subjected to a deterministic loading. Two model problems are considered. The first problem is associated with a trapezoidally distributed load, whereas the second problem treats a sinusoidally distributed load. The importance of the solution for the trapezoidal load lies in its practicality. The derivation of stochastic characteristics for random beams under a sinusoidal load is useful due to the expandability to generally distributed loads by a Fourier sine series expansion. Numerical results are reported for various cases illustrating the effect of stochasticity of the beam's properties on its flexural response.
引用
收藏
页码:2201 / 2224
页数:24
相关论文
共 50 条
  • [41] EXACT BERNOULLI-EULER STATIC STIFFNESS MATRIX FOR A RANGE OF TAPERED BEAM-COLUMNS
    BANERJEE, JR
    WILLIAMS, FW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (09) : 1615 - 1628
  • [42] Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [43] Stability of the Bernoulli-Euler Beam under the Action of a Moving Thermal Source
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2020, 65 (02) : 67 - 71
  • [44] Geometrically exact isogeometric Bernoulli-Euler beam based on the Frenet-Serret frame
    Borkovic, A.
    Gfrerer, M. H.
    Marussig, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [45] Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams
    Awrejcewicz, J.
    Krysko, A. V.
    Zhigalov, M. V.
    Saltykova, O. A.
    Krysko, V. A.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2008, 5 (04) : 319 - 363
  • [46] Free vibrations of Bernoulli-Euler beams with intermediate elastic support:: a concise thematic recension
    Maurizi, MJ
    Bambill, DV
    Bellés, PM
    De Rosa, MA
    JOURNAL OF SOUND AND VIBRATION, 2005, 281 (3-5) : 1238 - 1239
  • [47] Geometrically exact static isogeometric analysis of arbitrarily curved plane Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    THIN-WALLED STRUCTURES, 2022, 170
  • [49] FREQUENCY-ANALYSIS OF 2-SPAN UNIFORM BERNOULLI-EULER BEAMS - COMMENT
    LAURA, PAA
    JOURNAL OF SOUND AND VIBRATION, 1992, 153 (01) : 167 - 167
  • [50] Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams
    Wang, Tong
    He, Tao
    Li, Hongjing
    STRUCTURAL ENGINEERING AND MECHANICS, 2016, 59 (06) : 1139 - 1153