Exact solutions for stochastic Bernoulli-Euler beams under deterministic loading

被引:1
|
作者
Malkiel, Nachman [1 ]
Rabinovitch, Oded [2 ]
Elishakoff, Isaac [3 ]
机构
[1] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Fac Civil & Environm Engn, Abel Wolman Chair Civil Engn, IL-32000 Haifa, Israel
[3] Florida Atlantic Univ, Dept Ocean & Mech Engn, Boca Raton, FL 33431 USA
关键词
D O I
10.1007/s00707-020-02895-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study deals with two general solutions for a simply supported linear elastic Bernoulli-Euler beam with a stochastic bending flexibility, subjected to a deterministic loading. Two model problems are considered. The first problem is associated with a trapezoidally distributed load, whereas the second problem treats a sinusoidally distributed load. The importance of the solution for the trapezoidal load lies in its practicality. The derivation of stochastic characteristics for random beams under a sinusoidal load is useful due to the expandability to generally distributed loads by a Fourier sine series expansion. Numerical results are reported for various cases illustrating the effect of stochasticity of the beam's properties on its flexural response.
引用
收藏
页码:2201 / 2224
页数:24
相关论文
共 50 条
  • [21] ONE-DIMENSIONAL THEORY OF CRACKED BERNOULLI-EULER BEAMS
    CHRISTIDES, S
    BARR, ADS
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1984, 26 (11-1) : 639 - 648
  • [22] Elastically restrained Bernoulli-Euler beams applied to rotary machinery modelling
    Tiago A.N.Silva
    Nuno M.M.Maia
    Acta Mechanica Sinica, 2011, 27 (01) : 56 - 62
  • [23] AN EXACT SOLUTION FOR THE VIBRATION OF HELICAL SPRINGS USING A BERNOULLI-EULER MODEL
    PEARSON, D
    WITTRICK, WH
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1986, 28 (02) : 83 - 96
  • [24] Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams
    Ammari, Kais
    APPLICABLE ANALYSIS, 2007, 86 (12) : 1529 - 1548
  • [25] Elastically restrained Bernoulli-Euler beams applied to rotary machinery modelling
    Silva, Tiago A. N.
    Maia, Nuno M. M.
    ACTA MECHANICA SINICA, 2011, 27 (01) : 56 - 62
  • [26] Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution
    Maiz, Santiago
    Bambill, Diana V.
    Rossit, Carlos A.
    Laura, P. A. A.
    JOURNAL OF SOUND AND VIBRATION, 2007, 303 (3-5) : 895 - 908
  • [27] A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods
    da Costa e Silva, Catia
    Maassen, Sascha F.
    Pimenta, Paulo M.
    Schroeder, Joerg
    COMPUTATIONAL MECHANICS, 2020, 65 (04) : 905 - 923
  • [28] Elastically restrained Bernoulli-Euler beams applied to rotary machinery modelling
    Tiago A. N. Silva
    Nuno M. M. Maia
    Acta Mechanica Sinica, 2011, 27 : 56 - 62
  • [29] Influence of material distribution and damping on the dynamic stability of Bernoulli-Euler beams
    Garus, Sebastian
    Garus, Justyna
    Sochacki, Wojciech
    Nabialek, Marcin
    Petru, Jana
    Borek, Wojciech
    Sofer, Michal
    Kwiaton, Pawel
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2023, 71 (04)
  • [30] Multi-cracked Euler-Bernoulli beams: Mathematical modeling and exact solutions
    Caddemi, Salvatore
    Morassi, Antonino
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (06) : 944 - 956