Exact solutions for stochastic Bernoulli-Euler beams under deterministic loading

被引:1
|
作者
Malkiel, Nachman [1 ]
Rabinovitch, Oded [2 ]
Elishakoff, Isaac [3 ]
机构
[1] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Fac Civil & Environm Engn, Abel Wolman Chair Civil Engn, IL-32000 Haifa, Israel
[3] Florida Atlantic Univ, Dept Ocean & Mech Engn, Boca Raton, FL 33431 USA
关键词
D O I
10.1007/s00707-020-02895-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study deals with two general solutions for a simply supported linear elastic Bernoulli-Euler beam with a stochastic bending flexibility, subjected to a deterministic loading. Two model problems are considered. The first problem is associated with a trapezoidally distributed load, whereas the second problem treats a sinusoidally distributed load. The importance of the solution for the trapezoidal load lies in its practicality. The derivation of stochastic characteristics for random beams under a sinusoidal load is useful due to the expandability to generally distributed loads by a Fourier sine series expansion. Numerical results are reported for various cases illustrating the effect of stochasticity of the beam's properties on its flexural response.
引用
收藏
页码:2201 / 2224
页数:24
相关论文
共 50 条
  • [1] Exact solutions for stochastic Bernoulli–Euler beams under deterministic loading
    Nachman Malkiel
    Oded Rabinovitch
    Isaac Elishakoff
    Acta Mechanica, 2021, 232 : 2201 - 2224
  • [2] EXACT BERNOULLI-EULER DYNAMIC STIFFNESS MATRIX FOR A RANGE OF TAPERED BEAMS
    BANERJEE, JR
    WILLIAMS, FW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (12) : 2289 - 2302
  • [3] Exact solutions of Euler-Bernoulli beams
    Haider, Jamil Abbas
    Zaman, F. D.
    Lone, Showkat Ahmad
    Anwar, Sadia
    Almutlak, Salmeh A.
    Elseesy, Ibrahim E.
    MODERN PHYSICS LETTERS B, 2023, 37 (33):
  • [4] Exact and approximate solutions, and variational principles for stochastic smear beams under deterministic loading
    Impollonia, N
    Elishakoff, I
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (24) : 3151 - 3164
  • [5] HIGH EIGENFREQUENCIES OF NONUNIFORM BERNOULLI-EULER BEAMS
    KATHNELSON, AN
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1992, 34 (10) : 805 - 808
  • [6] SOME CLOSED-FORM SOLUTIONS IN RANDOM VIBRATION OF BERNOULLI-EULER BEAMS
    ELISHAKOFF, I
    LIVSHITS, D
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1984, 22 (11-1) : 1291 - 1301
  • [7] CONSERVATION-LAWS FOR NONHOMOGENEOUS BERNOULLI-EULER BEAMS
    CHIEN, N
    HONEIN, T
    HERRMANN, G
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (23) : 3321 - 3335
  • [8] Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads
    Giunta, Filippo
    Muscolino, Giuseppe
    Sofi, Alba
    Elishakoff, Isaac
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2591 - 2596
  • [9] Dissipative dynamics of geometrically nonlinear Bernoulli-Euler beams
    A. S. Desyatova
    M. V. Zhigalov
    V. A. Krys’ko
    O. A. Saltykova
    Mechanics of Solids, 2008, 43 : 948 - 956
  • [10] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    T. I. Zhdan
    Moscow University Mechanics Bulletin, 2019, 74 : 123 - 127