Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification

被引:7
|
作者
Wong, Weng San [1 ]
Amer, Mohammed [1 ]
Maul, Tomas [1 ]
Liao, Iman Yi [1 ]
Ahmed, Amr [1 ]
机构
[1] Univ Nottingham Malaysia, Sch Comp Sci, Semenyih, Malaysia
关键词
Breast cancer classification; Deep learning; Histopathological images; Data augmentation; CGANs;
D O I
10.1007/978-3-030-36056-6_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic breast cancer classification benefits pathologists in obtaining fast and precise diagnoses and improving early detection. However, the performance of deep learning models depends greatly on the quality and quantity of the datasets used. Due to the complexity and high costs of patient data collection, many medical datasets, particularly for pathological conditions, suffer from small sample sizes. Hence, developing a deep learning solution for breast cancer classification is still challenging. Data augmentation is one of the popular approaches to bridge this gap. In this work, we propose to use Conditional Generative Adversarial Networks (CGANs) for data augmentation. The aim of training CGANs is to generate a new set of realistic synthetic images and combine these together with real images to form a new augmented training set. The experiments show that most of the images produced by CGAN are reliable and classification performance with CGAN-based data augmentation can achieve good results. This method, unlike traditional data augmentation, can produce histopathological images that are completely different from the existing data. Therefore, this technique has the potential to address data scarcity and to directly benefit the training of deep learning models.
引用
收藏
页码:392 / 402
页数:11
相关论文
共 50 条
  • [41] A deep data augmentation framework based on generative adversarial networks
    Wang, Qiping
    Luo, Ling
    Xie, Haoran
    Rao, Yanghui
    Lau, Raymond Y. K.
    Zhang, Detian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42871 - 42887
  • [42] Explainable evaluation of generative adversarial networks for wearables data augmentation
    Narteni, Sara
    Orani, Vanessa
    Ferrari, Enrico
    Verda, Damiano
    Cambiaso, Enrico
    Mongelli, Maurizio
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [43] A deep data augmentation framework based on generative adversarial networks
    Qiping Wang
    Ling Luo
    Haoran Xie
    Yanghui Rao
    Raymond Y.K. Lau
    Detian Zhang
    Multimedia Tools and Applications, 2022, 81 : 42871 - 42887
  • [44] Biomedical Data Augmentation Using Generative Adversarial Neural Networks
    Calimeri, Francesco
    Marzullo, Aldo
    Stamile, Claudio
    Terracina, Giorgio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 626 - 634
  • [45] SEQUENTIAL IOT DATA AUGMENTATION USING GENERATIVE ADVERSARIAL NETWORKS
    Tschuchnig, Maximilian Ernst
    Ferner, Cornelia
    Wegenkittl, Stefan
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4212 - 4216
  • [46] Efficient Approaches for Data Augmentation by Using Generative Adversarial Networks
    Saha, Pretom Kumar
    Logofatu, Doina
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 386 - 399
  • [47] Generative Adversarial Networks for Data Augmentation in Structural Adhesive Inspection
    Peres, Ricardo Silva
    Azevedo, Miguel
    Araujo, Sara Oleiro
    Guedes, Magno
    Miranda, Fabio
    Barata, Jose
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [48] Generative adversarial networks for data augmentation in machine fault diagnosis
    Shao, Siyu
    Wang, Pu
    Yan, Ruqiang
    COMPUTERS IN INDUSTRY, 2019, 106 : 85 - 93
  • [49] Data Augmentation for Voiceprint Recognition Using Generative Adversarial Networks
    Lin, Yao-San
    Chen, Hung-Yu
    Huang, Mei-Ling
    Hsieh, Tsung-Yu
    ALGORITHMS, 2024, 17 (12)
  • [50] Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis
    Perez, Eduardo
    Ventura, Sebastian
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 141