We study the generalized hypergeometric system introduced by Gelfand, Kapranov and Zelevinsky and its relationship with the toric Deligne-Mumford (DM) stacks recently studied by Borisov, Chen and Smith. We construct series solutions with values in a combinatorial version of the Chen-Ruan (orbifold) cohomology and in the K-theory of the associated DM stacks. In the spirit of the homological mirror symmetry conjecture of Kontsevich, we show that the K-theory action of the Fourier-Mukai functors associated to basic toric birational maps of DM stacks are mirrored by analytic continuation transformations of Mellin-Bames type. (C) 2006 Elsevier Inc. All rights reserved.