Mellin-Barnes integrals as Fourier-Mukai transforms

被引:40
作者
Borisov, Lev A.
Horja, R. Paul [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Mellin-Barnes integrals; Fourier-Mukai transforms; Gelfand-Kapranov-Zelevinsky hypergeometric systems; toric Deligne-Mumford stacks; K-theory; mirror symmetry;
D O I
10.1016/j.aim.2006.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the generalized hypergeometric system introduced by Gelfand, Kapranov and Zelevinsky and its relationship with the toric Deligne-Mumford (DM) stacks recently studied by Borisov, Chen and Smith. We construct series solutions with values in a combinatorial version of the Chen-Ruan (orbifold) cohomology and in the K-theory of the associated DM stacks. In the spirit of the homological mirror symmetry conjecture of Kontsevich, we show that the K-theory action of the Fourier-Mukai functors associated to basic toric birational maps of DM stacks are mirrored by analytic continuation transformations of Mellin-Bames type. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:876 / 927
页数:52
相关论文
共 24 条