Limit theorems for the minimal position in a branching random walk with independent logconcave displacements

被引:28
作者
Bachmann, M [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
关键词
branching random walk; minimal position; age-dependent branching process; first birth time; nonlinear integral operator; travelling wave; extreme value distribution;
D O I
10.1017/S0001867800009824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a branching random walk in which each particle has a random number (one or more) of offspring particles that are displaced independently of each other according to a logconcave density. Under mild additional assumptions, we obtain the following results: the minimal position in the nth generation, adjusted by its alpha-quantile, converges weakly to a non-degenerate limiting distribution. There also exists a 'conditional limit' of the adjusted minimal position, which has a (Gumbel) extreme value distribution delayed by a random time-lag. Consequently, the unconditional limiting distribution is a mixture of extreme value distributions.
引用
收藏
页码:159 / 176
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH, DOI DOI 10.1007/978-94-011-3030-1_38
[2]   1ST-BIRTH AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING-PROCESS [J].
BIGGINS, JD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :446-459
[3]   CHERNOFFS THEOREM IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) :630-636
[4]   MARTINGALE CONVERGENCE IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) :25-37
[5]  
BIGGINS JD, 1997, IMA VOL MATH APPL, V84, P19, DOI DOI 10.1007/978-1-4612-1862-3_2
[6]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[7]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[8]   MINIMAL DISPLACEMENT OF BRANCHING RANDOM-WALK [J].
BRAMSON, MD .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 45 (02) :89-108
[9]   A GENERAL AGE-DEPENDENT BRANCHING PROCESS .1. [J].
CRUMP, KS ;
MODE, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 24 (03) :494-&
[10]   LIMIT DISTRIBUTIONS FOR MINIMAL DISPLACEMENT OF BRANCHING RANDOM-WALKS [J].
DEKKING, FM ;
HOST, B .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (03) :403-426