Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2)

被引:65
作者
Chen, Yabing [1 ,3 ]
Zhao, Xinyang [2 ]
Wu, Hui [4 ]
机构
[1] Univ Alabama Birmingham, Dept Pathol, 614 Shelby Biomed Res Bldg,1825 Univ Blvd, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Dept Biochem, Birmingham, AL USA
[3] Birmingham Vet Affairs Med Ctr, Res Dept, Birmingham, AL USA
[4] Oregon Hlth & Sci Univ, Dept Integrat Biomed & Diagnost Sci, Sch Dent, Portland, OR 97201 USA
基金
美国国家卫生研究院;
关键词
arteriosclerosis; inflammation; morbidity; mortality; vascular calcification;
D O I
10.1161/ATVBAHA.120.313791
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked beta -N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked beta -N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 136 条
[1]   Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription [J].
Afzal, F ;
Pratap, J ;
Ito, K ;
Ito, Y ;
Stein, JL ;
Van Winen, AJ ;
Stein, GS ;
Lian, JB ;
Javed, A .
JOURNAL OF CELLULAR PHYSIOLOGY, 2005, 204 (01) :63-72
[2]   The Increase in O-Linked N-Acetylglucosamine Protein Modification Stimulates Chondrogenic Differentiation Both in Vitro and in Vivo [J].
Andres-Bergos, Jessica ;
Tardio, Lidia ;
Larranaga-Vera, Ane ;
Gomez, Rodolfo ;
Herrero-Beaumont, Gabriel ;
Largo, Raquel .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (40) :33615-33628
[3]   Groucho-dependent and -independent repression activities of runt domain proteins [J].
Aronson, BD ;
Fisher, AL ;
Blechman, K ;
Caudy, M ;
Gergen, JP .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5581-5587
[4]   An HDAC Inhibitor, Entinostat/MS-275, Partially Prevents Delayed Cranial Suture Closure in Heterozygous Runx2 Null Mice [J].
Bae, Han-Sol ;
Yoon, Won-Joon ;
Cho, Young-Dan ;
Islam, Rabia ;
Shin, Hye-Rim ;
Kim, Bong-Soo ;
Lim, Jin-Muk ;
Seo, Min-Seok ;
Cho, Seo-Ae ;
Choi, Kang-Young ;
Baek, Seung-Hak ;
Kim, Hong-Gee ;
Woo, Kyung-Mi ;
Baek, Jeong-Hwa ;
Lee, Yun-Sil ;
Ryoo, Hyun-Mo .
JOURNAL OF BONE AND MINERAL RESEARCH, 2017, 32 (05) :951-961
[5]   PEBP2-ALPHA-B/MOUSE AML1 CONSISTS OF MULTIPLE ISOFORMS THAT POSSESS DIFFERENTIAL TRANSACTIVATION POTENTIALS [J].
BAE, SC ;
OGAWA, E ;
MARUYAMA, M ;
OKA, H ;
SATAKE, M ;
SHIGESADA, K ;
JENKINS, NA ;
GILBERT, DJ ;
COPELAND, NG ;
ITO, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (05) :3242-3252
[6]   The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter [J].
Barutcu, A. Rasim ;
Tai, Phillip W. L. ;
Wu, Hai ;
Gordon, Jonathan A. R. ;
Whitfield, Troy W. ;
Dobson, Jason R. ;
Imbalzano, Anthony N. ;
Lian, Jane B. ;
van Wijnen, Andre J. ;
Stein, Janet L. ;
Stein, Gary S. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (16) :10360-U801
[7]   Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice [J].
Bennett, Brian J. ;
Scatena, Marta ;
Kirk, Elizabeth A. ;
Rattazzi, Marcello ;
Varon, Rebecca M. ;
Averill, Michelle ;
Schwartz, Stephen M. ;
Giachelli, Cecilia M. ;
Rosenfeld, Michael E. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2006, 26 (09) :2117-2124
[8]   A twist code determines the onset of osteoblast differentiation [J].
Bialek, P ;
Kern, B ;
Yang, XL ;
Schrock, M ;
Sosic, D ;
Hong, N ;
Wu, H ;
Yu, K ;
Ornitz, DM ;
Olson, EN ;
Justice, MJ ;
Karsenty, G .
DEVELOPMENTAL CELL, 2004, 6 (03) :423-435
[9]   Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis [J].
Boring, L ;
Gosling, J ;
Cleary, M ;
Charo, IF .
NATURE, 1998, 394 (6696) :894-897
[10]   Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus [J].
Bostroem, Kristina I. ;
Jumabay, Medet ;
Matveyenko, Aleksey ;
Nicholas, Susanne B. ;
Yao, Yucheng .
CIRCULATION RESEARCH, 2011, 108 (04) :446-U123