Robotic Instrument Segmentation With Image-to-Image Translation

被引:21
|
作者
Colleoni, Emanuele [1 ]
Stoyanov, Danail [1 ]
机构
[1] Univ Coll London UCL, Wellcome EPSRC Ctr Intervent & Surg Sci WEISS, London W1W 7TS, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Image segmentation; Gallium nitride; Feature extraction; Instruments; Robots; Generative adversarial networks; Data models; Medical robots and systems; deep learning methods; image-to-image translation; surgical robot simulators; surgical tool segmentation;
D O I
10.1109/LRA.2021.3056354
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The semantic segmentation of robotic surgery video and the delineation of robotic instruments are important for enabling automation. Despite major recent progresses, the majority of the latest deep learning models for instrument detection and segmentation rely on large datasets with ground truth labels. While demonstrating the capability, reliance on large labelled data is a problem for practical applications because systems would need to be re-trained on domain variations such as procedure type or instrument sets. In this letter, we propose to alleviate this problem by training deep learning models on datasets that are synthesised using image-to-image translation techniques and we investigate different methods to perform this process optimally. Experimentally, we demonstrate that the same deep network architecture for robotic instrument segmentation can be trained on both real data and on our proposed synthetic data without affecting the quality of the output models' performance. We show this for several recent approaches and provide experimental support on publicly available datasets, which highlight the potential value of this approach.
引用
收藏
页码:935 / 942
页数:8
相关论文
共 50 条
  • [31] SUNIT: multimodal unsupervised image-to-image translation with shared encoder
    Lin, Liyuan
    Ji, Shulin
    Zhou, Yuan
    Zhang, Shun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [32] Deep Generative Adversarial Networks for Image-to-Image Translation: A Review
    Alotaibi, Aziz
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 26
  • [33] Research on Image-to-Image Translation with Capsule Network
    Ye, Jian
    Chang, Qing
    Jia, Xiaotian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 141 - 151
  • [34] Consistent Embedded GAN for Image-to-Image Translation
    Xiong, Feng
    Wang, Qianqian
    Gao, Quanxue
    IEEE ACCESS, 2019, 7 : 126651 - 126661
  • [35] Semi-supervised Task Aware Image-to-Image Translation
    Muetze, Annika
    Rottmann, Matthias
    Gottschalk, Hanno
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2024, 2103 : 98 - 122
  • [36] Style-Guided Image-to-Image Translation for Multiple Domains
    Li, Tingting
    Zhao, Huan
    Wang, Song
    Huang, Jing
    MMPT '21: PROCEEDINGS OF THE 2021 WORKSHOP ON MULTI-MODAL PRE-TRAINING FOR MULTIMEDIA UNDERSTANDING, 2021, : 28 - 36
  • [37] Unpaired image-to-image translation of structural damage
    Varghese, Subin
    Hoskere, Vedhus
    ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [38] Image-to-image translation for wavefront and PSF estimation
    Smith, Jeffrey
    Cranney, Jesse
    Gretton, Charles
    Gratadour, Damien
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [39] Equivariant Adversarial Network for Image-to-image Translation
    Zareapoor, Masoumeh
    Yang, Jie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [40] Image-to-Image Translation for Near-Infrared Image Colorization
    Kim, Hyeongyu
    Kim, Jonghyun
    Kim, Joongkyu
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,