AUTOMATIC DETECTION OF MARTIAN DUST STORMS FROM HETEROGENEOUS DATA BASED ON DECISION LEVEL FUSION

被引:0
作者
Maeda, Keisuke [1 ]
Ogawa, Takahiro [1 ]
Haseyama, Miki [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, N-14,W-9, Sapporo, Hokkaido 0600814, Japan
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Mars; detection; dust storm; heterogeneous data; decision level fusion; MARS ORBITER CAMERA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents automatic detection of Martian dust storms from heterogeneous data (raw data, reflectance data and background subtraction data of the reflectance data) based on decision level fusion. Specifically, the proposed method first extracts image features from these data and selects optimal features for dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected image features are used to train the Support Vector Machine classifier that is constructed on each data. Furthermore, as a main contribution of this paper, the proposed method combines the multiple detection results obtained from the heterogeneous data based on decision level fusion with considering each classifier's detection performance to obtain accurate final detection results. Consequently, the proposed method realizes automatic and accurate detection of Martian dust storms.
引用
收藏
页码:2246 / 2250
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 2003, PRACTICAL GUIDE SUPP, DOI [DOI 10.1177/02632760022050997, 10 . 1177 / 02632760022050997]
[2]  
[Anonymous], P IEEE INT C AC SPEE
[3]   Automated Detection of Martian Dune Fields [J].
Bandeira, Lourenco ;
Marques, Jorge S. ;
Saraiva, Jose ;
Pina, Pedro .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) :626-630
[4]   Martian dust storms: 1999 Mars Orbiter Camera observations [J].
Cantor, BA ;
James, PB ;
Caplinger, M ;
Wolff, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E10) :23653-23687
[5]   Automatic detection of dust devils and clouds on Mars [J].
Castano, Andres ;
Fukunaga, Alex ;
Biesiadecki, Jeffrey ;
Neakrase, Lynn ;
Whelley, Patrick ;
Greeley, Ronald ;
Lemmon, Mark ;
Castano, Rebecca ;
Chien, Steve .
MACHINE VISION AND APPLICATIONS, 2008, 19 (5-6) :467-482
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   New views of Mars eolian activity, materials, and surface properties: Three vignettes from the Mars Global Surveyor Mars Orbiter Camera [J].
Edgett, KS ;
Malin, MC .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2000, 105 (E1) :1623-1650
[10]  
Ishihara K, 2014, IEEE IMAGE PROC, P2769, DOI 10.1109/ICIP.2014.7025560