Towards integrated tunable all-silicon free-electron light sources

被引:74
作者
Roques-Carmes, Charles [1 ]
Kooi, Steven E. [2 ]
Yang, Yi [1 ]
Massuda, Aviram [1 ]
Keathley, Phillip D. [1 ]
Zaidi, Aun [1 ]
Yang, Yujia [1 ]
Joannopoulos, John D. [2 ,3 ]
Berggren, Karl K. [1 ]
Kaminer, Ido [3 ,4 ]
Soljacic, Marin [1 ,3 ]
机构
[1] MIT, Res Lab Elect, 50 Vassar St, Cambridge, MA 02139 USA
[2] Inst Soldier Nanotechnol, NE47,500 Technol Sq, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
FIELD-EMITTER ARRAYS; RECENT PROGRESS; VISIBLE-LIGHT; EMISSION; LASERS; PERFORMANCE; NANOWIRES; RADIATION; GAIN;
D O I
10.1038/s41467-019-11070-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracting light from silicon is a longstanding challenge in modern engineering and physics. While silicon has underpinned the past 70 years of electronics advancement, a facile tunable and efficient silicon-based light source remains elusive. Here, we experimentally demonstrate the generation of tunable radiation from a one-dimensional, all-silicon nanograting. Light is generated by the spontaneous emission from the interaction of these nanogratings with low-energy free electrons (2-20 keV) and is recorded in the wavelength range of 800-1600 nm, which includes the silicon transparency window. Tunable free-electron-based light generation from nanoscale silicon gratings with efficiencies approaching those from metallic gratings is demonstrated. We theoretically investigate the feasibility of a scalable, compact, all-silicon tunable light source comprised of a silicon Field Emitter Array integrated with a silicon nanograting that emits at telecommunication wavelengths. Our results reveal the prospects of a CMOS-compatible electrically-pumped silicon light source for possible applications in the mid-infrared and telecommunication wavelengths.
引用
收藏
页数:8
相关论文
共 69 条
[1]   Light Well: A Tunable Free-Electron Light Source on a Chip [J].
Adamo, G. ;
MacDonald, K. F. ;
Fu, Y. H. ;
Wang, C-M. ;
Tsai, D. P. ;
Garcia de Abajo, F. J. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2009, 103 (11)
[2]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[3]  
[Anonymous], 3 5 COMPOUND SEMICON
[4]  
[Anonymous], 1998, Thermodynamics and an introduction to thermostatistics
[5]   Myths and rumours of silicon photonics [J].
Baehr-Jones, Tom ;
Pinguet, Thierry ;
Lo Guo-Qiang, Patrick ;
Danziger, Steven ;
Prather, Dennis ;
Hochberg, Michael .
NATURE PHOTONICS, 2012, 6 (04) :206-208
[6]   Epitaxial growth of InP nanowires on germanium [J].
Bakkers, EPAM ;
Van Dam, JA ;
De Franceschi, S ;
Kouwenhoven, LP ;
Kaiser, M ;
Verheijen, M ;
Wondergem, H ;
Van der Sluis, P .
NATURE MATERIALS, 2004, 3 (11) :769-773
[7]   An integrated CMOS high voltage supply for lab-on-a-chip systems [J].
Behnam, M. ;
Kaigala, G. V. ;
Khorasani, M. ;
Marshall, P. ;
Backhouse, C. J. ;
Elliott, D. G. .
LAB ON A CHIP, 2008, 8 (09) :1524-1529
[8]   Tip-Enhanced Strong-Field Photoemission [J].
Bormann, R. ;
Gulde, M. ;
Weismann, A. ;
Yalunin, S. V. ;
Ropers, C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (14)
[9]   Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals [J].
Brenny, B. J. M. ;
Coenen, T. ;
Polman, A. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (24)
[10]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/nphoton.2016.21, 10.1038/NPHOTON.2016.21]