An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics

被引:25
作者
Zaffino, Paolo [1 ]
Marzullo, Aldo [2 ]
Moccia, Sara [3 ,4 ]
Calimeri, Francesco [2 ]
De Momi, Elena [5 ]
Bertucci, Bernardo [6 ]
Arcuri, Pier Paolo [6 ]
Spadea, Maria Francesca [1 ]
机构
[1] Magna Graecia Univ Catanzaro, Dept Expt & Clin Med, I-88100 Catanzaro, Italy
[2] Univ Calabria, Dept Math & Comp Sci, I-87036 Arcavacata Di Rende, Italy
[3] Univ Politecn Marche, Dept Informat Engn, I-60131 Ancona, Italy
[4] Istituito Italiano Tecnol, Dept Adv Robot, I-16163 Genoa, Italy
[5] Politecn Milan, Dept Elect Informat & Bioengn DEIB, I-20133 Milan, Italy
[6] Pugliese Ciaccio Hosp, Dept Radiol, I-88100 Catanzaro, Italy
来源
BIOENGINEERING-BASEL | 2021年 / 8卷 / 02期
关键词
COVID-19; free CT dataset; medical imaging; radiomics;
D O I
10.3390/bioengineering8020026
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The coronavirus disease 19 (COVID-19) pandemic is having a dramatic impact on society and healthcare systems. In this complex scenario, lung computerized tomography (CT) may play an important prognostic role. However, datasets released so far present limitations that hamper the development of tools for quantitative analysis. In this paper, we present an open-source lung CT dataset comprising information on 50 COVID-19-positive patients. The CT volumes are provided along with (i) an automatic threshold-based annotation obtained with a Gaussian mixture model (GMM) and (ii) a scoring provided by an expert radiologist. This score was found to significantly correlate with the presence of ground glass opacities and the consolidation found with GMM. The dataset is freely available in an ITK-based file format under the CC BY-NC 4.0 license. The code for GMM fitting is publicly available, as well. We believe that our dataset will provide a unique opportunity for researchers working in the field of medical image analysis, and hope that its release will lay the foundations for the successfully implementation of algorithms to support clinicians in facing the COVID-19 pandemic.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 17 条
[1]  
Alashaikh A, 2020, COVID 19 OPEN SOURCE, DOI [10.1101/2020.05.19.20107532, DOI 10.1101/2020.05.19.20107532]
[2]  
Andreychenko A., 2020, ARXIV200506465
[3]   Typical and atypical COVID-19 computed tomography findings [J].
Caruso, Damiano ;
Polidori, Tiziano ;
Guido, Gisella ;
Nicolai, Matteo ;
Bracci, Benedetta ;
Cremona, Antonio ;
Zerunian, Marta ;
Polici, Michela ;
Pucciarelli, Francesco ;
Rucci, Carlotta ;
De Dominicis, Chiara ;
Di Girolamo, Marco ;
Argento, Giuseppe ;
Sergi, Daniela ;
Laghi, Andrea .
WORLD JOURNAL OF CLINICAL CASES, 2020, 8 (15) :3177-U65
[4]   The Role of Imaging in the Detection and Management of COVID-19: A Review [J].
Dong, Di ;
Tang, Zhenchao ;
Wang, Shuo ;
Hui, Hui ;
Gong, Lixin ;
Lu, Yao ;
Xue, Zhong ;
Liao, Hongen ;
Chen, Fang ;
Yang, Fan ;
Jin, Ronghua ;
Wang, Kun ;
Liu, Zhenyu ;
Wei, Jingwei ;
Mu, Wei ;
Zhang, Hui ;
Jiang, Jingying ;
Tian, Jie ;
Li, Hongjun .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 :16-29
[5]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[6]   Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis [J].
Francone, Marco ;
Iafrate, Franco ;
Masci, Giorgio Maria ;
Coco, Simona ;
Cilia, Francesco ;
Manganaro, Lucia ;
Panebianco, Valeria ;
Andreoli, Chiara ;
Colaiacomo, Maria Chiara ;
Zingaropoli, Maria Antonella ;
Ciardi, Maria Rosa ;
Mastroianni, Claudio Maria ;
Pugliese, Francesco ;
Alessandri, Francesco ;
Turriziani, Ombretta ;
Ricci, Paolo ;
Catalano, Carlo .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6808-6817
[7]   A role for CT in COVID-19? What data really tell us so far [J].
Hope, Michael D. ;
Raptis, Constantine A. ;
Shah, Amar ;
Hammer, Mark M. ;
Henry, Travis S. .
LANCET, 2020, 395 (10231) :1189-1190
[8]   The challenges of deploying artificial intelligence models in a rapidly evolving pandemic [J].
Hu, Yipeng ;
Jacob, Joseph ;
Parker, Geoffrey J. M. ;
Hawkes, David J. ;
Hurst, John R. ;
Stoyanov, Danail .
NATURE MACHINE INTELLIGENCE, 2020, 2 (06) :298-300
[9]  
Kikinis R., 2014, Intraoperative Imaging and Image-Guided Therapy, P277, DOI DOI 10.1007/978-1-4614-7657-319
[10]  
Kinser Jason M, 2018, IMAGE OPERATORS IMAG, V1st