A Low Walk Error Analog Front-End Circuit With Intensity Compensation for Direct ToF LiDAR

被引:40
作者
Wang, Xiayu [1 ]
Ma, Rui [1 ]
Li, Dong [1 ]
Zheng, Hao [1 ,2 ]
Liu, Maliang [1 ]
Zhu, Zhangming [1 ]
机构
[1] Xidian Univ, Sch Microelect, Xian 710071, Peoples R China
[2] Xidian Univ, High Tech Inst Xian, Xian 710075, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser radar; Detectors; Current measurement; Bandwidth; Timing; Dynamic range; Pulse measurements; Analog front-end; LiDAR; transimpedance amplifier; dToF; intensity compensation; LASER-RADAR RECEIVER; CHANNEL; TDC;
D O I
10.1109/TCSI.2020.3022714
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analog front-end (AFE) circuit comprising an amplifier module, a peak detector, and a timing discriminator has been designed to facilitate the target identification for direct time-of-flight (dToF) LiDAR. The amplitude saturation error (ASE) is compensated in this article for the intensity determination, which is conducted based on the combination of the pulse width and peak detector. Together with the improved walk error compensation scheme, the proposed AFE circuit can attain the distance and intensity information simultaneously with lower cost and larger dynamic range. A specific frequency compensation method is proposed with a shunt feedback TIA, which improves the stability and mitigates the impact of the package parasitics. The measured -3-dB bandwidth, transimpedance gain, and the input-referred noise current are 281 MHz, 86 dB Omega, and 4.68 pA/root Hz respectively. The proposed AFE circuit, which is fabricated in 0.18 mu m CMOS technology, achieves the distance accuracy of +/- 30 ps and the intensity accuracy of +/- 4% in the dynamic range of 1:5000 without gain control scheme.
引用
收藏
页码:4309 / 4321
页数:13
相关论文
共 31 条
  • [1] A Wide Dynamic Range Laser Radar Receiver Based on Input Pulse-Shaping Techniques
    Baharmast, Aram
    Kurtti, Sami
    Kostamovaara, Juha
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (08) : 2566 - 2577
  • [2] Optical Wireless APD Receiver With High Background-Light Immunity for Increased Communication Distances
    Brandl, Paul
    Jukic, Tomislav
    Enne, Reinhard
    Schneider-Hornstein, Kerstin
    Zimmermann, Horst
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (07) : 1663 - 1673
  • [3] A High-Sensitivity and Low-Walk Error LADAR Receiver for Military Application
    Cho, Hong-Soo
    Kim, Chung-Hwan
    Lee, Sang-Gug
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (10) : 3007 - 3015
  • [4] A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS
    Hintikka, Mikko
    Kostamovaara, Juha
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2017, 93 (02) : 245 - 256
  • [5] A Linear-Mode LiDAR Sensor Using a Multi-Channel CMOS Transimpedance Amplifier Array
    Hong, Chaerin
    Kim, Seung-Hoon
    Kim, Ji-Hoon
    Park, Sung Min
    [J]. IEEE SENSORS JOURNAL, 2018, 18 (17) : 7032 - 7040
  • [6] Design of a CMOS ROIC for InGaAs Self-Mixing Detectors Used in FM/cw LADAR
    Hu, Kai
    Zhao, Yiqiang
    Ye, Mao
    Gao, Jian
    Zhao, Gongyuan
    Zhou, Guoqing
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (17) : 5547 - 5557
  • [7] A 32 x 128 SPAD-257 TDC Receiver IC for Pulsed TOF Solid-State 3-D Imaging
    Jahromi, Sahba
    Jansson, Jussi-Pekka
    Keranen, Pekka
    Kostamovaara, Juha
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (07) : 1960 - 1970
  • [9] A CMOS PEAK DETECT SAMPLE-AND-HOLD CIRCUIT
    KRUISKAMP, MW
    LEENAERTS, DMW
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1994, 41 (01) : 295 - 298
  • [10] A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme
    Kurtti, S.
    Nissinen, J.
    Kostamovaara, J.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (03) : 550 - 561