A modified generic second order algorithm with fixed-time stability

被引:8
作者
Tran, Xuan-Toa [1 ]
Oh, Hyondong [2 ]
机构
[1] Nguyen Tat Thanh Univ, NTT Hitech Inst, 300A Nguyen Tat Thanh St, Ho Chi Minh City, Vietnam
[2] Ulsan Natl Inst Sci & Technol, Sch Mech Aerosp & Nucl Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Second order sliding mode; Finite-time stability; Fixed-time stability; Differentiator; Uncertain nonlinear system; Lyapunov function approach;
D O I
10.1016/j.isatra.2020.10.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a modified second order sliding mode algorithm with fixed-time stability analysis based on the Lyapunov function approach. An existing second order sliding mode algorithm is generalized, which provides superior features on convergence rate, accuracy, and robustness against a class of perturbations. The performance of the proposed algorithm is compared with existing algorithms through designing observers first. Then, the proposed algorithm-based controller which displays the fixed-time convergence property is designed to validate its effectiveness and to confirm the theoretical analysis. (C) 2020 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 48 条
[1]   Robust fault reconstruction for linear parameter varying systems using sliding mode observers [J].
Alwi, Halim ;
Edwards, Christopher .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (14) :1947-1968
[2]   Introduction [J].
Alwi, Halim ;
Edwards, Christopher ;
Tan, Chee Pin .
Advances in Industrial Control, 2011, (9780857296498) :1-6
[3]  
[Anonymous], 2013, Sliding modes in control and optimization
[4]   Chattering avoidance by second-order sliding mode control [J].
Bartolini, G ;
Ferrara, A ;
Usai, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (02) :241-246
[5]   Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation [J].
Basin, Michael ;
Panathula, Chandrasekhara Bharath ;
Shtessel, Yuri .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1104-1111
[6]   A new geometric proof of super-twisting control with actuator saturation [J].
Behera, Abhisek K. ;
Chalanga, Asif ;
Bandyopadhyay, Bijnan .
AUTOMATICA, 2018, 87 :437-441
[7]   Exact state estimation for linear systems with unknown inputs based on hierarchical super-twisting algorithm [J].
Bejarano, F. J. ;
Fridman, L. ;
Poznyak, A. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (18) :1734-1753
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Uniform sliding mode controllers and uniform sliding surfaces [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2012, 29 (04) :491-505
[10]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733