Band-Offset Degradation in van der Waals Heterojunctions

被引:20
作者
Lv, Yawei [1 ]
Tong, Qingjun [1 ]
Liu, Yuan [1 ]
Li, Ling [2 ]
Chang, Sheng [3 ]
Zhu, Wenguang [4 ,5 ]
Jiang, Changzhong [1 ,3 ]
Liao, Lei [3 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Minist Educ, Key Lab Micro Nanooptoelect Devices, Changsha 410082, Hunan, Peoples R China
[2] Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[4] Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat ICQD, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2019年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
HETEROSTRUCTURES; TRANSISTOR;
D O I
10.1103/PhysRevApplied.12.044064
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two-dimensional materials-based van der Waals heterojunctions (vdWHs) are promising candidates for tunnel field-effect transistors (TFET) because of their atomically clean and electronically sharp junction interfaces and lattice mismatch-free characteristics. The tunneling behaviors of the TFETs greatly depend on the energy band alignments between different layers. By first-principles analyses, the band offsets in vdWHs are found to be very sensitive to the vdW interaction and temperature, especially for the type-III heterojunctions, which can be switched to the type-II configuration. This band-offset degradation is attributed to the interlayer charge transfer, generating built-in electric fields and potential differences, consistent with the plate condenser model. The charges are mainly transferred by two mechanisms: spontaneous and thermal excitation-assisted electron tunneling. The first one is caused by the electron wave function overlaps and energy difference of the valence band maximum and conduction band minimum, which belong to different materials, whereas the latter one is strongly correlated to the thermal excitations. The band-offset degradation is a general phenomenon in vdWHs, especially for those with a type-III band alignment. Therefore, attention should be paid in TFET investigations, since they are switched on by changing the band alignments to the type-III configuration.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy
    Li, Xufan
    Lin, Ming-Wei
    Lin, Junhao
    Huang, Bing
    Puretzky, Alexander A.
    Ma, Cheng
    Wang, Kai
    Zhou, Wu
    Pantelides, Sokrates T.
    Chi, Miaofang
    Kravchenko, Ivan
    Fowlkes, Jason
    Rouleau, Christopher M.
    Geohegan, David B.
    Xiao, Kai
    SCIENCE ADVANCES, 2016, 2 (04):
  • [22] Stable Ohmic contacts achieved in hydrogenated graphene/C3B van der Waals heterojunctions
    Shengguo, Cao
    Zhanhai, Li
    Jianing, Han
    Zhenhua, Zhang
    SURFACES AND INTERFACES, 2024, 46
  • [23] Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo1-xWxY2
    Zhang, Mengjuan
    Pan, Jiangling
    Zhou, Wenzhe
    Li, Aolin
    Ouyang, Fangping
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (50)
  • [24] Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures
    Gonzalez, R. I.
    Mella, J.
    Diaz, P.
    Allende, S.
    Vogel, E. E.
    Cardenas, C.
    Munoz, F.
    2D MATERIALS, 2019, 6 (04)
  • [25] Heteroepitaxial van der Waals semiconductor superlattices
    Jin, Gangtae
    Lee, Chang-Soo
    Okello, Odongo F. N.
    Lee, Suk-Ho
    Park, Min Yeong
    Cha, Soonyoung
    Seo, Seung-Young
    Moon, Gunho
    Min, Seok Young
    Yang, Dong-Hwan
    Han, Cheolhee
    Ahn, Hyungju
    Lee, Jekwan
    Choi, Hyunyong
    Kim, Jonghwan
    Choi, Si-Young
    Jo, Moon-Ho
    NATURE NANOTECHNOLOGY, 2021, 16 (10) : 1092 - +
  • [26] Graphene/MoSi2X4: A class of van der Waals heterojunctions with unique mechanical and optical properties and controllable electrical contacts
    Li, Z. H.
    Han, J. N.
    Cao, S. G.
    Zhang, Z. H.
    APPLIED SURFACE SCIENCE, 2023, 614
  • [27] Supercurrent in van der Waals Josephson junction
    Yabuki, Naoto
    Moriya, Rai
    Arai, Miho
    Sata, Yohta
    Morikawa, Sei
    Masubuchi, Satoru
    Machida, Tomoki
    NATURE COMMUNICATIONS, 2016, 7
  • [28] Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS2 van der Waals Heterojunctions
    Yang, Shengxue
    Wu, Minghui
    Wang, Bin
    Zhao, Li-Dong
    Huang, Li
    Jiang, Chengbao
    Wei, Su-Huai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) : 42149 - 42155
  • [29] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    ACS NANO, 2022, 16 (05) : 7144 - 7167
  • [30] Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures
    Pierucci, Debora
    Henck, Hugo
    Avila, Jose
    Balan, Adrian
    Naylor, Carl H.
    Patriarche, Gilles
    Dappe, Yannick J.
    Silly, Mathieu G.
    Sirotti, Fausto
    Johnson, A. T. Charlie
    Asensio, Maria C.
    Ouerghi, Abdelkarim
    NANO LETTERS, 2016, 16 (07) : 4054 - 4061