Transforming heat transfer with thermal metamaterials and devices

被引:461
作者
Li, Ying [1 ,2 ,3 ]
Li, Wei [4 ,5 ]
Han, Tiancheng [6 ]
Zheng, Xu [7 ]
Li, Jiaxin [1 ,8 ]
Li, Baowen [9 ]
Fan, Shanhui [4 ]
Qiu, Cheng-Wei [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[2] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, Hangzhou, Peoples R China
[3] Zhejiang Univ, Electromagnet Acad, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Int Joint Innovat Ctr, Haining, Peoples R China
[4] Stanford Univ, Ginzton Lab, Dept Elect Engn, Stanford, CA 94305 USA
[5] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, GPL, Changchun, Peoples R China
[6] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Natl Engn Res Ctr Electromagnet Radiat Control Ma, Chengdu, Peoples R China
[7] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[8] Harbin Inst Technol, Sch Mechatron Engn, Harbin, Peoples R China
[9] Univ Colorado, Paul M Rady Dept Mech Engn, Boulder, CO 80309 USA
关键词
Heat transfer - Temperature control - Radiation effects;
D O I
10.1038/s41578-021-00283-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The demand for sophisticated tools and approaches in heat management and control has triggered the fast development of fields that include conductive thermal metamaterials, nanophononics, and far-field and near-field radiative thermal management. In this Review, we offer a unified perspective on the control of heat transfer, summarizing complementary paradigms towards the manipulation of physical parameters and the realization of unprecedented phenomena in heat transfer using artificial structures. The Review is divided into three parts that focus on the three main categories of heat flow control. Thermal conduction and radiation, at both the macroscale and microscale, are emphasized in the first and second parts. The third part discusses efforts to actively introduce heat sources or tune the material parameters with multiphysical effects in conduction, radiation and convection. We conclude by analysing the challenges in this research area and surveying new possible directions, in particular topological thermal effects, heat waves and quantum thermal effects. Artificial structures with novel thermal properties are promising for heat-transfer applications. This Review provides an overview of thermal metamaterials and devices, discussing the working principles underlying the manipulation of thermal conduction and radiation at different length scales.
引用
收藏
页码:488 / 507
页数:20
相关论文
共 294 条
[1]   Active Peltier Coolers Based on Correlated and Magnon-Drag Metals [J].
Adams, M. J. ;
Verosky, M. ;
Zebarjadi, M. ;
Heremans, J. P. .
PHYSICAL REVIEW APPLIED, 2019, 11 (05)
[2]   High switching ratio variable-temperature solid-state thermal switch based on thermoelectric effects [J].
Adams, Michael J. ;
Verosky, Mark ;
Zebarjadi, Mona ;
Heremans, Joseph P. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 134 :114-118
[3]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[4]   Aluminium nanopillars reduce thermal conductivity of silicon nanobeams [J].
Anufriev, R. ;
Yanagisawa, R. ;
Nomura, M. .
NANOSCALE, 2017, 9 (39) :15083-15088
[5]   Quasi-Ballistic Heat Conduction due to Levy Phonon Flights in Silicon Nanowires [J].
Anufriev, Roman ;
Gluchko, Sergei ;
Volz, Sebastian ;
Nomura, Masahiro .
ACS NANO, 2018, 12 (12) :11928-11935
[6]   Heat guiding and focusing using ballistic phonon transport in phononic nanostructures [J].
Anufriev, Roman ;
Ramiere, Aymeric ;
Maire, Jeremie ;
Nomura, Masahiro .
NATURE COMMUNICATIONS, 2017, 8
[7]   Heat conduction engineering in pillar-based phononic crystals [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2017, 95 (15)
[8]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[9]   Nanophotonic engineering of far-field thermal emitters [J].
Baranov, Denis G. ;
Xiao, Yuzhe ;
Nechepurenko, Igor A. ;
Krasnok, Alex ;
Alu, Andrea ;
Kats, Mikhail A. .
NATURE MATERIALS, 2019, 18 (09) :920-930
[10]   Microscale radiation in thermophotovoltaic devices - A review [J].
Basu, S. ;
Chen, Y.-B. ;
Zhang, Z. M. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :689-716