Holomorphy types and spaces of entire functions of bounded type on banach spaces

被引:12
作者
Favaro, Vinicius V. [1 ]
Jatoba, Ariosvaldo M. [1 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38400902 Uberlandia, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Banach spaces; holomorphy types; homogeneous polynomials; holomorphic functions; convolution operators; Borel transform; approximation and existence theorems;
D O I
10.1007/s10587-009-0063-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper spaces of entire functions of I similar to-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we "construct an algorithm" to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des ,quations aux d,riv,es partielles et des ,quations des convolutions. Annales de l'Institute Fourier (Grenoble) VI, 1955/56, 271-355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, S,minaire d'Analyse Moderne, 2, Universit, de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplica double dagger es tau (p; q)-somantes e sigma(p)-nucleares, Thesis, Universidade Estadual de Campinas, 2006.
引用
收藏
页码:909 / 927
页数:19
相关论文
共 15 条
  • [1] [Anonymous], 1956, Annales de l' institut Fourier, DOI 10.5802/aif.65
  • [2] Banach S., 1932, THEORIE OPERATIONS L
  • [3] HOLOMORPHY TYPES ON A BANACH SPACE
    DINEEN, S
    [J]. STUDIA MATHEMATICA, 1971, 39 (03) : 241 - &
  • [4] FAVARO VV, CONVOLUTION EQUATION
  • [5] FAVARO VV, 2008, PORT MATH, V65, P285
  • [6] FLORET K., 1997, Note Mat., V17, P153, DOI [10.1285/i15900932v17p153, DOI 10.1285/I15900932V17P153]
  • [7] Gupta C. P., 1969, SEMINAIRE ANAL MODER, V2
  • [8] Horvath, 1966, TOPOLOGICAL VECTOR S, VI
  • [9] MARTINEA.A, 1967, B SOC MATH FR, V95, P109
  • [10] MATOS MC, 1986, COMPLEX ANAL FUNCTIO, P129