PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES

被引:9
作者
Chung, Matthias [1 ]
Binois, Mickael [2 ]
Gramacy, Robert B. [3 ]
Bardsley, Johnathan M. [4 ]
Moquin, David J. [5 ]
Smith, Amanda P. [6 ]
Smith, Amber M. [6 ]
机构
[1] Virginia Tech, Acad Integrated Sci, Dept Math, Computat Modeling & Data Analyt Div, Blacksburg, VA 24061 USA
[2] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[3] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[4] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[5] Univ Tennessee, Dept Internal Med, Hlth Sci Ctr, Memphis, TN 38103 USA
[6] Univ Tennessee, Dept Pediat, Hlth Sci Ctr, Memphis, TN 38103 USA
基金
美国食品与农业研究所;
关键词
inverse problems; dynamical systems; Gaussian process; parameter estimation; uncertainty estimation; viral kinetic model; DIFFERENTIAL-EQUATIONS; SENSITIVITY-ANALYSIS; DISTRIBUTIONS; ASSIMILATION; CALIBRATION; REGRESSION; DESIGN; MODELS;
D O I
10.1137/18M1213403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g., ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations. To address these issues, we propose a new method for learning parameterized dynamical systems from data. We first customize and fit a surrogate stochastic process directly to observational data, front-loading with statistical learning to respect prior knowledge (e.g., smoothness), cope with challenging data features like heteroskedasticity, heavy tails, and censoring. Then, samples of the stochastic process are used as "surrogate data" and point estimates are computed via ordinary point estimation methods in a modular fashion. Attractive features of this two-step approach include modularity and trivial parallelizability. We demonstrate its advantages on a predator-prey simulation study and on a real-world application involving within-host influenza virus infection data paired with a viral kinetic model, with comparisons to a more conventional Markov chain Monte Carlo (MCMC) based Bayesian approach.
引用
收藏
页码:A2212 / A2238
页数:27
相关论文
共 74 条
  • [1] STOCHASTIC KRIGING FOR SIMULATION METAMODELING
    Ankenman, Bruce
    Nelson, Barry L.
    Staum, Jeremy
    [J]. 2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 362 - 370
  • [2] [Anonymous], COMPUT SCI ENGRG
  • [3] [Anonymous], 2013, The design and analysis of computer experiments
  • [4] [Anonymous], 1923, Lectures on Cauchy's Problem in Linear Partial Differential Equations"
  • [5] [Anonymous], HETGP HETEROSKEDASTI
  • [6] Asch M., 2016, Data Assimilation, DOI DOI 10.1137/1.9781611974546
  • [7] Aster R. C., 2005, Parameter estimation and inverse problems, V2nd
  • [8] FITTING ORDINARY DIFFERENTIAL-EQUATIONS TO CHAOTIC DATA
    BAAKE, E
    BAAKE, M
    BOCK, HG
    BRIGGS, KM
    [J]. PHYSICAL REVIEW A, 1992, 45 (08): : 5524 - 5529
  • [9] Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model
    Bandara, Samuel
    Schloeder, Johannes P.
    Eils, Roland
    Bock, Hans Georg
    Meyer, Tobias
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (11)
  • [10] RANDOMIZE-THEN-OPTIMIZE: A METHOD FOR SAMPLING FROM POSTERIOR DISTRIBUTIONS IN NONLINEAR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    Solonen, Antti
    Haario, Heikki
    Laine, Marko
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) : A1895 - A1910