Divergent responses of permafrost peatlands to recent climate change

被引:37
作者
Sim, Thomas G. [1 ]
Swindles, Graeme T. [2 ,3 ,4 ]
Morris, Paul J. [1 ]
Baird, Andy J. [1 ]
Cooper, Claire L. [5 ]
Gallego-Sala, Angela, V [6 ]
Charman, Dan J. [6 ]
Roland, Thomas P. [6 ]
Borken, Werner [7 ]
Mullan, Donal J. [2 ]
Aquino-Lopez, Marco A. [8 ]
Galka, Mariusz [9 ]
机构
[1] Univ Leeds, Sch Geog, Leeds, W Yorkshire, England
[2] Queens Univ Belfast, Sch Nat & Built Environm, Geog, Belfast, Antrim, North Ireland
[3] Carleton Univ, Ottawa Carleton Geosci Ctr, Ottawa, ON, Canada
[4] Carleton Univ, Dept Earth Sci, Ottawa, ON, Canada
[5] Univ Lincoln, Sch Geog, Lincoln, England
[6] Univ Exeter, Coll Life & Environm Sci, Geog, Exeter, Devon, England
[7] Univ Bayreuth, Bayreuth Ctr Ecol & Environm Res BayCEER, Soil Ecol, Dr Hans Frisch Str 1-3, D-95448 Bayreuth, Germany
[8] Ctr Invest Matemat, Guanajuato, Mexico
[9] Univ Lodz, Fac Biol & Environm Protect, Dept Biogeog Paleoecol & Nat Protect, 12-16 Banacha Str, Lodz, Poland
基金
英国自然环境研究理事会;
关键词
permafrost; peatlands; climate change; hydrology; carbon; CARBON ACCUMULATION; PALEOHYDROLOGICAL RECONSTRUCTION; THAWING PERMAFROST; BOREAL PEATLANDS; TESTATE AMEBA; SPHAGNUM; GROWTH; NITROGEN; LIMITS; RADIOCARBON;
D O I
10.1088/1748-9326/abe00b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Permafrost peatlands are found in high-latitude regions and store globally-important amounts of soil organic carbon. These regions are warming at over twice the global average rate, causing permafrost thaw, and exposing previously inert carbon to decomposition and emission to the atmosphere as greenhouse gases. However, it is unclear how peatland hydrological behaviour, vegetation structure and carbon balance, and the linkages between them, will respond to permafrost thaw in a warming climate. Here we show that permafrost peatlands follow divergent ecohydrological trajectories in response to recent climate change within the same rapidly warming region (northern Sweden). Whether a site becomes wetter or drier depends on local factors and the autogenic response of individual peatlands. We find that bryophyte-dominated vegetation demonstrates resistance, and in some cases resilience, to climatic and hydrological shifts. Drying at four sites is clearly associated with reduced carbon sequestration, while no clear relationship at wetting sites is observed. We highlight the complex dynamics of permafrost peatlands and warn against an overly-simple approach when considering their ecohydrological trajectories and role as C sinks under a warming climate.
引用
收藏
页数:13
相关论文
共 99 条
[71]   Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming [J].
Sim, T. G. ;
Swindles, G. T. ;
Morris, P. J. ;
Galka, M. ;
Mullan, D. ;
Galloway, J. M. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (09) :4726-4737
[72]  
Smith A.J. E., 2004, The Moss Flora of Britain and Ireland
[73]   Growth of two peat-forming mosses in subarctic mires:: species interactions and effects of simulated climate change [J].
Sonesson, M ;
Carlsson, BÅ ;
Callaghan, TV ;
Halling, S ;
Björn, LO ;
Bertgren, M ;
Johanson, U .
OIKOS, 2002, 99 (01) :151-160
[74]   Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation [J].
Soudzilovskaia, Nadejda A. ;
van Bodegom, Peter M. ;
Cornelissen, Johannes H. C. .
FUNCTIONAL ECOLOGY, 2013, 27 (06) :1442-1454
[75]   Tundra permafrost thaw causes significant shifts in energy partitioning [J].
Stiegler, Christian ;
Johansson, Margareta ;
Christensen, Torben R. ;
Mastepanov, Mikhail ;
Lindroth, Anders .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2016, 68
[76]  
Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1, DOI 10.1017/cbo9781107415324
[77]   Widespread drying of European peatlands in recent centuries [J].
Swindles, Graeme T. ;
Morris, Paul J. ;
Mullan, Donal J. ;
Payne, Richard J. ;
Roland, Thomas P. ;
Amesbury, Matthew J. ;
Lamentowicz, Mariusz ;
Turner, T. Edward ;
Gallego-Sala, Angela ;
Sim, Thomas ;
Barr, Iestyn D. ;
Blaauw, Maarten ;
Blundell, Antony ;
Chambers, Frank M. ;
Charman, Dan J. ;
Feurdean, Angelica ;
Galloway, Jennifer M. ;
Galka, Mariusz ;
Green, Sophie M. ;
Kajukalo, Katarzyna ;
Karofeld, Edgar ;
Korhola, Atte ;
Lamentowicz, Lukasz ;
Langdon, Peter ;
Marcisz, Katarzyna ;
Mauquoy, Dmitri ;
Mazei, Yuri A. ;
McKeown, Michelle M. ;
Mitchell, Edward A. D. ;
Novenko, Elena ;
Plunkett, Gill ;
Roe, Helen M. ;
Schoning, Kristian ;
Sillasoo, Ulle ;
Tsyganov, Andrey N. ;
van der Linden, Marjolein ;
Valiranta, Minna ;
Warner, Barry .
NATURE GEOSCIENCE, 2019, 12 (11) :922-+
[78]   The long-term fate of permafrost peatlands under rapid climate warming [J].
Swindles, Graeme T. ;
Morris, Paul J. ;
Mullan, Donal ;
Watson, Elizabeth J. ;
Turner, T. Edward ;
Roland, Thomas P. ;
Amesbury, Matthew J. ;
Kokfelt, Ulla ;
Schoning, Kristian ;
Pratte, Steve ;
Gallego-Sala, Angela ;
Charman, Dan J. ;
Sanderson, Nicole ;
Garneau, Michelle ;
Carrivick, Jonathan L. ;
Woulds, Clare ;
Holden, Joseph ;
Parry, Lauren ;
Galloway, Jennifer M. .
SCIENTIFIC REPORTS, 2015, 5
[79]   Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data [J].
Swindles, Graeme T. ;
Holden, Joseph ;
Raby, Cassandra L. ;
Turner, T. Edward ;
Blundell, Antony ;
Charman, Dan J. ;
Menberu, Meseret Walle ;
Klove, Bjorn .
QUATERNARY SCIENCE REVIEWS, 2015, 120 :107-117
[80]   Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands [J].
Swindles, Graeme T. ;
Amesbury, Matthew J. ;
Turner, T. Edward ;
Carrivick, Jonathan L. ;
Woulds, Clare ;
Raby, Cassandra ;
Mullan, Donal ;
Roland, Thomas P. ;
Galloway, Jennifer M. ;
Parry, Lauren ;
Kokfelt, Ulla ;
Garneau, Michelle ;
Charman, Dan J. ;
Holden, Joseph .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2015, 424 :111-122