SrTiO3/TiO2 heterostructure nanowires with enhanced electron-hole separation for efficient photocatalytic activity

被引:8
作者
Yang, Liuxin [1 ]
Chen, Zhou [2 ]
Zhang, Jian [1 ]
Wang, Chang-An [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
基金
中国国家自然科学基金;
关键词
photocatalytic; SrTiO3/TiO2; nanowire; heterostructure; nanocomposite; OF-THE-ART; CO2; REDUCTION; CHARGE SEPARATION; HYDROGEN-PRODUCTION; DUAL-COCATALYSTS; CDS-PT; WATER; TIO2; DEGRADATION; NANOPARTICLES;
D O I
10.1007/s11706-019-0477-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heterostructure is an effective strategy to facilitate the charge carrier separation and promote the photocatalytic performance. In this paper, uniform SrTiO3 nanocubes were in-situ grown on TiO2 nanowires to construct heterojunctions. The composites were prepared by a facile alkaline hydrothermal method and an in-situ deposition method. The obtained SrTiO3/TiO2 exhibits much better photocatalytic activity than those of pure TiO2 nanowires and commercial TiO2 (P25) evaluated by photocatalytic water splitting and decomposition of Rhodamine B (RB). The hydrogen generation rate of SrTiO3/TiO2 nanowires could reach 111.26 mmol.g(-1).h(-1) at room temperature, much better than those of pure TiO2 nanowires (44.18 mmol.g(-1).h(-1))and P25 (35.77 mmol.g(-1).h(-1)). The RB decomposition rate of SrTiO3/TiO2 is 7.2 times of P25 and 2.4 times of pure TiO2 nanowires. The photocatalytic activity increases initially and then decreases with the rising content of SrTiO3, suggesting an optimum SrTiO3/TiO2 ratio that can further enhance the catalytic activity. The improved photocatalytic activity of SrTiO3/TiO2 is principally attributed to the enhanced charge separation deriving from the SrTiO3/TiO2 heterojunction.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 56 条
[1]   Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide [J].
Burek, Bastien O. ;
Bahnemann, Detlef W. ;
Bloh, Jonathan Z. .
ACS CATALYSIS, 2019, 9 (01) :25-37
[2]   A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity [J].
Cao, Tieping ;
Li, Yuejun ;
Wang, Changhua ;
Shao, Changlu ;
Liu, Yichun .
LANGMUIR, 2011, 27 (06) :2946-2952
[3]   Nanostructured materials for water splitting - state of the art and future needs: A mini-review [J].
Chen, Shuai ;
Thind, Sapanbir S. ;
Chen, Aicheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 63 :10-17
[4]   CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation [J].
Crake, Angus ;
Christoforidis, Konstantinos C. ;
Kafizas, Andreas ;
Zafeiratos, Spyridon ;
Petit, Camille .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 210 :131-140
[5]  
Diebold U., 1996, Surface Science Spectra, V4, P227, DOI 10.1116/1.1247794
[6]   Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants [J].
Dong, Shuying ;
Ding, Xuhui ;
Guo, Teng ;
Yue, Xiaoping ;
Han, Xiao ;
Sun, Jianhui .
CHEMICAL ENGINEERING JOURNAL, 2017, 316 :778-789
[7]   Black Phosphorus Sensitized TiO2 Mesocrystal Photocatalyst for Hydrogen Evolution with Visible and Near-Infrared Light Irradiation [J].
Elbanna, Ossama ;
Zhu, Mingshan ;
Fujitsuka, Mamoru ;
Majima, Tetsuro .
ACS CATALYSIS, 2019, 9 (04) :3618-+
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution [J].
Gao, Chaomin ;
Wei, Tao ;
Zhang, Yanyan ;
Song, Xiaohan ;
Huan, Yu ;
Liu, Hong ;
Zhao, Mingwen ;
Yu, Jinghua ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2019, 31 (08)
[10]   Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 [J].
Ge, Jian-Feng ;
Liu, Zhi-Long ;
Liu, Canhua ;
Gao, Chun-Lei ;
Qian, Dong ;
Xue, Qi-Kun ;
Liu, Ying ;
Jia, Jin-Feng .
NATURE MATERIALS, 2015, 14 (03) :285-289