Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops

被引:47
作者
Genze, Nikita [1 ,2 ]
Bharti, Richa [1 ,2 ]
Grieb, Michael [4 ]
Schultheiss, Sebastian J. [5 ]
Grimm, Dominik G. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, TUM Campus Straubing Biotechnol & Sustainabil, Bioinformat, Schulgasse 22, D-94315 Straubing, Germany
[2] Weihenstephan Triesdorf Univ Appl Sci, Petersgasse 18, D-94315 Straubing, Germany
[3] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany
[4] Ctr Excellence Renewable Resources TFZ, Technol & Support Ctr, Schulgasse 20, D-94315 Straubing, Germany
[5] Comput GmbH, Eisenbahnstr 1, D-72072 Tubingen, Germany
关键词
Seed germination; Germination prediction; Germination indices; Machine learning; Faster R-CNN; SEEDS;
D O I
10.1186/s13007-020-00699-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Assessment of seed germination is an essential task for seed researchers to measure the quality and performance of seeds. Usually, seed assessments are done manually, which is a cumbersome, time consuming and error-prone process. Classical image analyses methods are not well suited for large-scale germination experiments, because they often rely on manual adjustments of color-based thresholds. We here propose a machine learning approach using modern artificial neural networks with region proposals for accurate seed germination detection and high-throughput seed germination experiments. Results We generated labeled imaging data of the germination process of more than 2400 seeds for three different crops, Zea mays (maize), Secale cereale (rye) and Pennisetum glaucum (pearl millet), with a total of more than 23,000 images. Different state-of-the-art convolutional neural network (CNN) architectures with region proposals have been trained using transfer learning to automatically identify seeds within petri dishes and to predict whether the seeds germinated or not. Our proposed models achieved a high mean average precision (mAP) on a hold-out test data set of approximately 97.9%, 94.2% and 94.3% for Zea mays, Secale cereale and Pennisetum glaucum respectively. Further, various single-value germination indices, such as Mean Germination Time and Germination Uncertainty, can be computed more accurately with the predictions of our proposed model compared to manual countings. Conclusion Our proposed machine learning-based method can help to speed up the assessment of seed germination experiments for different seed cultivars. It has lower error rates and a higher performance compared to conventional and manual methods, leading to more accurate germination indices and quality assessments of seeds.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [42] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [43] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [44] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [45] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363
  • [46] Machine Learning-based Seismic Prediction of Building Structures
    Liu, Shuai
    Peng, Hailiang
    Deng, Xiaolu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 256 - 261
  • [47] Machine Learning-Based Prediction of Stroke in Emergency Departments
    Abedi, Vida
    Misra, Debdipto
    Chaudhary, Durgesh
    Avula, Venkatesh
    Schirmer, Clemens M.
    Li, Jiang
    Zand, Ramin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2024, 17
  • [48] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [49] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [50] Machine learning-based icing prediction on wind turbines
    Kreutz, Markus
    Ait-Alla, Abderrahim
    Varasteh, Kamaloddin
    Oelker, Stephan
    Greulich, Andreas
    Freitag, Michael
    Thoben, Klaus-Dieter
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 423 - 428