Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops

被引:48
|
作者
Genze, Nikita [1 ,2 ]
Bharti, Richa [1 ,2 ]
Grieb, Michael [4 ]
Schultheiss, Sebastian J. [5 ]
Grimm, Dominik G. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, TUM Campus Straubing Biotechnol & Sustainabil, Bioinformat, Schulgasse 22, D-94315 Straubing, Germany
[2] Weihenstephan Triesdorf Univ Appl Sci, Petersgasse 18, D-94315 Straubing, Germany
[3] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany
[4] Ctr Excellence Renewable Resources TFZ, Technol & Support Ctr, Schulgasse 20, D-94315 Straubing, Germany
[5] Comput GmbH, Eisenbahnstr 1, D-72072 Tubingen, Germany
关键词
Seed germination; Germination prediction; Germination indices; Machine learning; Faster R-CNN; SEEDS;
D O I
10.1186/s13007-020-00699-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Assessment of seed germination is an essential task for seed researchers to measure the quality and performance of seeds. Usually, seed assessments are done manually, which is a cumbersome, time consuming and error-prone process. Classical image analyses methods are not well suited for large-scale germination experiments, because they often rely on manual adjustments of color-based thresholds. We here propose a machine learning approach using modern artificial neural networks with region proposals for accurate seed germination detection and high-throughput seed germination experiments. Results We generated labeled imaging data of the germination process of more than 2400 seeds for three different crops, Zea mays (maize), Secale cereale (rye) and Pennisetum glaucum (pearl millet), with a total of more than 23,000 images. Different state-of-the-art convolutional neural network (CNN) architectures with region proposals have been trained using transfer learning to automatically identify seeds within petri dishes and to predict whether the seeds germinated or not. Our proposed models achieved a high mean average precision (mAP) on a hold-out test data set of approximately 97.9%, 94.2% and 94.3% for Zea mays, Secale cereale and Pennisetum glaucum respectively. Further, various single-value germination indices, such as Mean Germination Time and Germination Uncertainty, can be computed more accurately with the predictions of our proposed model compared to manual countings. Conclusion Our proposed machine learning-based method can help to speed up the assessment of seed germination experiments for different seed cultivars. It has lower error rates and a higher performance compared to conventional and manual methods, leading to more accurate germination indices and quality assessments of seeds.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data Curation and Quality Evaluation for Machine Learning-Based Cyber Intrusion Detection
    Tran, Ngan
    Chen, Haihua
    Bhuyan, Jay
    Ding, Junhua
    IEEE ACCESS, 2022, 10 : 121900 - 121923
  • [22] Machine learning-based assessment of diabetes risk
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [23] Induced bioresistance via BNP detection for machine learning-based risk assessment
    So, Seth
    Khalaf, Aya
    Yi, Xinruo
    Herring, Connor
    Zhang, Yingze
    Simon, Marc A.
    Akcakaya, Murat
    Lee, SeungHee
    Yun, Minhee
    BIOSENSORS & BIOELECTRONICS, 2021, 175
  • [24] Machine learning-based wavelength detection system
    Kwon, Ik-Hyun
    Choi, Yong-Joon
    Ide, Tomoya
    Noda, Toshihiko
    Takahashi, Kazuhiro
    Sawada, Kazuaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (01)
  • [25] Machine learning-based phishing attack detection
    Hossain S.
    Sarma D.
    Chakma R.J.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 378 - 388
  • [26] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [27] Machine Learning-Based Phishing Attack Detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 378 - 388
  • [28] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [29] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [30] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29