Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy

被引:145
作者
Naji, A
Ghanbaja, J
Humbert, B
Willmann, P
Billaud, D
机构
[1] CNRS,UHP,LCPE,F-54600 VILLERS LES NANCY,FRANCE
[2] CTR NATL ETUD SPATIALES,F-31055 TOULOUSE,FRANCE
关键词
electroreduction; graphite; pitch fibres; ethylene carbonate;
D O I
10.1016/S0378-7753(96)02439-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical intercalation of unsolvated lithium into pitch carbon fibres P100 and natural graphite UF4 has been carried out in LiClO4-ethylene carbonate electrolyte. The reversible electrochemical capacity for a current equal to 7 mu A/mg is 260 mAh/g for P100 carbon fibres and about 350 mAh/g for UF4 graphite, respectively. During the first discharge (reduction) an electrochemical capacity greater than the theoretical value (372 mAh/g) corresponding to LiC6 is obtained. This excess of capacity can be related to the formation of a passivating layer on the carbon surface. Analysis of this layer by means of transmission electron microscopy (electron diffraction, electron energy loss spectroscopy, and imaging) and Fourier-transform infrared spectroscopy has shown that this layer is composed of lithium carbonate Li2CO3 and alkylcarbonates of lithium ROCO(2)Li. Formation of Li2CO3 occurs at potentials in the 1-0.8 V range versus Li+/Li, and formation of lithium alkylcarbonates then follows at potentials below 0.8 V. We then attributed the voltage plateau at 0.9 V versus Li+/Li observed in the electrochemical waves to the reduction of ethylene carbonate into Li2CO3. Transmission electron spectroscopy revealed the presence of lithium chloride in the electrolyte which appears as small rods.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 26 条
[1]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[2]   THE STUDY OF LI-GRAPHITE INTERCALATION PROCESSES IN SEVERAL ELECTROLYTE SYSTEMS USING IN-SITU X-RAY-DIFFRACTION [J].
AURBACH, D ;
EINELI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1746-1752
[3]   THE ELECTROCHEMICAL-BEHAVIOR OF SELECTED POLAR AROTIC SYSTEMS [J].
AURBACH, D ;
GOTTLIEB, H .
ELECTROCHIMICA ACTA, 1989, 34 (02) :141-156
[4]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[5]   THE USE OF POLARIZED-LIGHT IN THE INFRARED REFLECTANCE SPECTROSCOPIC INVESTIGATION OF THE LITHIUM ORGANIC ELECTROLYTE INTERFACE [J].
BARUSSEAU, S ;
BEDEN, B ;
BROUSSELY, M ;
PERTON, F .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :296-300
[6]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[7]   ELECTROCHEMICAL SYNTHESIS OF BINARY GRAPHITE-LITHIUM INTERCALATION COMPOUNDS [J].
BILLAUD, D ;
HENRY, FX ;
WILLMANN, P .
MATERIALS RESEARCH BULLETIN, 1993, 28 (05) :477-483
[8]   DEPENDENCE OF THE MORPHOLOGY OF GRAPHITIC ELECTRODES ON THE ELECTROCHEMICAL INTERCALATION OF LITHIUM IONS [J].
BILLAUD, D ;
HENRY, FX ;
WILLMANN, P .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :383-388
[9]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[10]  
CHUSID O, 1993, J POWER SOURCES, V43, P47, DOI 10.1016/0378-7753(93)80101-T