Vortex-antivortex proliferation from an obstacle in thin film ferromagnets

被引:13
作者
Iacocca, Ezio [1 ,2 ]
Hoefer, Mark A. [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Chalmers, Div Theoret Phys, Dept Phys, S-41296 Gothenburg, Sweden
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
MAGNETIC DROPLET SOLITONS; DYNAMICS; SKYRMIONS; NUCLEATION; MOTION; WAVES;
D O I
10.1103/PhysRevB.95.134409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetization dynamics in thin film ferromagnets can be studied using a dispersive hydrodynamic formulation. The equations describing the magnetodynamics map to a compressible fluid with broken Galilean invariance parametrized by the longitudinal spin density and a magnetic analog of the fluid velocity that define spindensity waves. A direct consequence of these equations is the determination of a magnetic Mach number. Micromagnetic simulations reveal nucleation of nonlinear structures from an impenetrable object realized by an applied magnetic field spot or a defect. In this work, micromagnetic simulations demonstrate vortex-antivortex pair nucleation from an obstacle. Their interaction establishes either ordered or irregular vortex-antivortex complexes. Furthermore, when the magnetic Mach number exceeds unity (supersonic flow), a Mach cone and periodic wavefronts are observed, which can be well-described by solutions of the steady, linearized equations. These results are reminiscent of theoretical and experimental observations in Bose-Einstein condensates, and further support the analogy between the magnetodynamics of a thin film ferromagnet and compressible fluids. The nucleation of nonlinear structures and vortex-antivortex complexes using this approach enables the study of their interactions and effects on the stability of spin-density waves.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2009, MAGNETIC DOMAINS ANA
[2]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[3]   Particle-Hole Asymmetry and Brightening of Solitons in a Strongly Repulsive Bose-Einstein Condensate [J].
Balakrishnan, Radha ;
Satija, Indubala I. ;
Clark, Charles W. .
PHYSICAL REVIEW LETTERS, 2009, 103 (23)
[4]   Current-induced domain wall motion [J].
Beach, G. S. D. ;
Tsoi, M. ;
Erskine, J. L. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (07) :1272-1281
[5]   Bogoliubov-Cerenkov radiation in a Bose-Einstein condensate flowing against an obstacle [J].
Carusotto, I. ;
Hu, S. X. ;
Collins, L. A. ;
Smerzi, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[6]   Nonlocal transport mediated by spin supercurrents [J].
Chen, Hua ;
Kent, Andrew D. ;
MacDonald, Allan H. ;
Sodemann, Inti .
PHYSICAL REVIEW B, 2014, 90 (22)
[7]   Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators [J].
Chung, Sunjae ;
Eklund, Anders ;
Iacocca, Ezio ;
Mohseni, Seyed Majid ;
Sani, Sohrab R. ;
Bookman, Lake ;
Hoefer, Mark A. ;
Dumas, Randy K. ;
Akerman, Johan .
NATURE COMMUNICATIONS, 2016, 7
[8]   Dispersive hydrodynamics of nonlinear polarization waves in two-component Bose-Einstein condensates [J].
Congy, T. ;
Kamchatnov, A. M. ;
Pavloff, N. .
SCIPOST PHYSICS, 2016, 1 (01)
[9]  
Courant R, 1999, Supersonic Flow and Shock Waves, V5th
[10]   Oblique dark solitons in supersonic flow of a Bose-Einstein condensate [J].
El, G. A. ;
Gammal, A. ;
Kamchatnov, A. M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)