Integrating real-time data analysis into automatic tracking of social insects

被引:6
作者
Sclocco, Alessio [1 ,2 ]
Ong, Shirlyn Jia Yun [1 ]
Aung, Sai Yan Pyay [1 ]
Teseo, Serafino [1 ]
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore, Singapore
[2] Netherlands eSci Ctr, Amsterdam, North Holland, Netherlands
关键词
real-time data analysis; video tracking; ants; animal behaviour; INTERACTION PATTERNS; BEHAVIOR; INDIVIDUALS; GENERATION; COLONY;
D O I
10.1098/rsos.202033
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automatic video tracking has become a standard tool for investigating the social behaviour of insects. The recent integration of computer vision in tracking technologies will probably lead to fully automated behavioural pattern classification within the next few years. However, many current systems rely on offline data analysis and use computationally expensive techniques to track pre-recorded videos. To address this gap, we developed BACH (Behaviour Analysis maCHine), a software that performs video tracking of insect groups in real time. BACH uses object recognition via convolutional neural networks and identifies individually tagged insects via an existing matrix code recognition algorithm. We compared the tracking performances of BACH and a human observer (HO) across a series of short videos of ants moving in a two-dimensional arena. We found that BACH detected ant shapes only slightly worse than the HO. However, its matrix code-mediated identification of individual ants only attained human-comparable levels when ants moved relatively slowly, and fell when ants walked relatively fast. This happened because BACH had a relatively low efficiency in detecting matrix codes in blurry images of ants walking at high speeds. BACH needs to undergo hardware and software adjustments to overcome its present limits. Nevertheless, our study emphasizes the possibility of, and the need for, further integrating real-time data analysis into the study of animal behaviour. This will accelerate data generation, visualization and sharing, opening possibilities for conducting fully remote collaborative experiments.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC [J].
Aaij, R. ;
Akar, S. ;
Albrecht, J. ;
Alexander, M. ;
Albero, A. Alfonso ;
Amerio, S. ;
Anderlini, L. ;
d'Argent, P. ;
Baranov, A. ;
Barter, W. ;
Benson, S. ;
Bobulska, D. ;
Boettcher, T. ;
Borghi, S. ;
Bowen, E. E. ;
Brarda, L. ;
Burr, C. ;
Cachemiche, J-P ;
Calvo Gomez, M. ;
Cattaneo, M. ;
Chanal, H. ;
Chapman, M. ;
Chebbi, M. ;
Chefdeville, M. ;
Ciambrone, P. ;
Cogan, J. ;
Chitic, S-G ;
Clemencic, M. ;
Closier, J. ;
Couturier, B. ;
Daoudi, M. ;
De Bruyn, K. ;
De Cian, M. ;
Deschamps, O. ;
Dettori, F. ;
Dordei, F. ;
Douglas, L. ;
Dreimanis, K. ;
Dufour, L. ;
Dujany, G. ;
Durante, P. ;
Duval, P-Y ;
Dziurda, A. ;
Esen, S. ;
Fitzpatrick, C. ;
Fontanna, M. ;
Frank, M. ;
Van Veghel, M. ;
Gaspar, C. ;
Gerstel, D. .
JOURNAL OF INSTRUMENTATION, 2019, 14 (04)
[2]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[3]   Tracking All Members of a Honey Bee Colony Over Their Lifetime Using Learned Models of Correspondence [J].
Boenisch, Franziska ;
Rosemann, Benjamin ;
Wild, Benjamin ;
Dormagen, David ;
Wario, Fernando ;
Landgraf, Tim .
FRONTIERS IN ROBOTICS AND AI, 2018, 5
[4]  
Bradski G, 2000, DR DOBBS J, V25, P120
[5]   BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion [J].
Crall, James D. ;
Gravish, Nick ;
Mountcastle, Andrew M. ;
Combes, Stacey A. .
PLOS ONE, 2015, 10 (09)
[6]   anTraX, a software package for high-throughput video tracking of color-tagged insects [J].
Gal, Asaf ;
Saragosti, Jonathan ;
Kronauer, Daniel J. C. .
ELIFE, 2020, 9 :1-32
[7]   Generation of fiducial marker dictionaries using Mixed Integer Linear Programming [J].
Garrido-Jurado, S. ;
Munoz-Salinas, R. ;
Madrid-Cuevas, F. J. ;
Medina-Carnicer, R. .
PATTERN RECOGNITION, 2016, 51 :481-491
[8]   Automatic generation and detection of highly reliable fiducial markers under occlusion [J].
Garrido-Jurado, S. ;
Munoz-Salinas, R. ;
Madrid-Cuevas, F. J. ;
Marin-Jimenez, M. J. .
PATTERN RECOGNITION, 2014, 47 (06) :2280-2292
[9]   Honey bee virus causes context-dependent changes in host social behavior [J].
Geffre, Amy C. ;
Gernat, Tim ;
Harwood, Gyan P. ;
Jones, Beryl M. ;
Gysi, Deisy Morselli ;
Hamilton, Adam R. ;
Bonning, Bryony C. ;
Toth, Amy L. ;
Robinson, Gene E. ;
Dolezal, Adam G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) :10406-10413
[10]  
Gernat T., 2020, BIORXIV, DOI [10.1101/2020.11.27.401760, DOI 10.1101/2020.11.27.401760]