Stringy E-functions of canonical toric Fano threefolds and their applications

被引:1
作者
Batyrev, V. V. [1 ]
Schaller, K. [2 ]
机构
[1] Univ Tubingen, Math Inst, Tubingen, Germany
[2] Free Univ Berlin, Math Inst, Berlin, Germany
关键词
Fano varieties; K3-surfaces; lattice polytopes; toric varieties; HODGE NUMBERS; VARIETIES;
D O I
10.1070/IM8835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Delta be a 3-dimensional lattice polytope containing exactly one interior lattice point. We give a simple combinatorial formula for computing the stringy E-function of the 3-dimensional canonical toric Fano variety X-Delta associated with Delta. Using the stringy Libgober-Wood identity and our formula, we generalize the well-known combinatorial identity Sigma(theta <=Delta dim()(theta)=1) v(theta) . v(theta*) = 24 which holds for 3-dimensional reflexive polytopes Delta.
引用
收藏
页码:676 / 697
页数:22
相关论文
共 18 条
[1]  
Batyrev V., 1998, INTEGRABLE SYSTEMS A, P1
[2]  
Batyrev V.V., 1994, J. Alg. Geom., V3, P493
[3]  
Batyrev V, 2017, PURE APPL MATH Q, V13, P1
[4]  
Batyrev V, 2017, COMMUN NUMBER THEORY, V11, P1
[5]  
Batyrev VV, 2000, MATH RES LETT, V7, P155
[6]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[7]  
Beck M, 2005, CONTEMP MATH, V374, P179
[8]   Hypergeometric equations and weighted projective spaces [J].
Corti, Alessio ;
Golyshev, Vasily .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (08) :1577-1590
[9]  
Danilov VI., 1978, Uspekhi Mat. Nauk., V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
[10]   STRINGS ON ORBIFOLDS [J].
DIXON, L ;
HARVEY, JA ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 261 (04) :678-686