A functional limit theorem on powers of random permutations

被引:1
作者
Manstavicius, E. [1 ]
机构
[1] Vilnius State Univ, LT-03225 Vilnius, Lithuania
关键词
random permutation; total variation; additive function; multiplicative function;
D O I
10.1007/s10986-009-9056-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a functional limit theorem for a process defined via partial sums of an additive function on the subset of powers of permutations in the symmetric group. It establishes necessary and sufficient conditions for the convergence to the standard Brownian motion. The main ingredient of the applied approach is estimation of the total-variation distance from the distribution of a cycle structure vector to the distribution of an appropriate random vector with independent coordinates.
引用
收藏
页码:297 / 308
页数:12
相关论文
共 10 条
  • [1] Arratia R., 2003, EMS MONOGR MATH
  • [2] Babu G. J., 1999, SANKHYA A, V61, P312
  • [3] Billingsley P., 1968, CONVERGE PROBAB MEAS
  • [4] Gikhman I., 1977, INTRO THEORY RANDOM
  • [5] Mappings on decomposable combinatorial structures: Analytic approach
    Manstavicius, E
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01) : 61 - 78
  • [6] MANSTAVICIUS E, 2009, MONATSH MAT IN PRESS
  • [7] Manstavicius E, 2009, ARXIV09031051
  • [8] MINEEV MP, 1978, MATH USSR SB, V28, P421
  • [9] ZACHAROVAS V, 2004, ARXIV09011733 VILNIU
  • [10] ZACHAROVAS V, 2004, LITH MATH J, V44, P269