An L1-type estimate for Riesz potentials

被引:35
作者
Schikorra, Armin [1 ]
Spector, Daniel [2 ]
Van Schaftingen, Jean [3 ]
机构
[1] Albert Ludwigs Univ, Abt Reine Math, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
[2] Natl Chiao Tung Univ, Dept Appl Math, 1001 Ta Hsueh Rd, Hsinchu, Taiwan
[3] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2,Bte L7-01-01, B-1348 Louvain La Neuve, Belgium
关键词
Riesz potentials; Riesz transforms; Sobolev inequalities; fractional gradient; EQUATION; SPACES;
D O I
10.4171/RMI/937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish new L-1-type estimates for the classical Riesz potentials of order alpha is an element of (0, N): parallel to I alpha u parallel to N-L/(N-alpha)(R-N) <= C parallel to Ru parallel to (L1(RN; RN)). This sharpens the result of Stein and Weiss on the mapping properties of Riesz potentials on the real Hardy space H-1 (R-N) and provides a new family of L-1-Sobolev inequalities for the Riesz fractional gradient.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 27 条
[1]  
Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
[2]  
Bourgain J, 2003, J AM MATH SOC, V16, P393
[3]  
Bourgain J, 2002, CR MATH, V334, P973
[4]  
Bourgain J, 2007, J EUR MATH SOC, V9, P277
[5]  
Bourget JL, 2004, POSITIF, P1, DOI 10.1007/s10240-004-0019-5
[6]   A limiting case for the divergence equation [J].
Bousquet, Pierre ;
Mironescu, Petru ;
Russ, Emmanuel .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) :427-460
[7]  
Chanillo S, 2009, MATH RES LETT, V16, P487
[8]  
Cohen A, 2003, REV MAT IBEROAM, V19, P235
[9]  
Gagliardo E., 1958, Ric. Mat., V7, P102
[10]  
Garg R, 2015, INDIANA U MATH J, V64, P1697