Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams

被引:14
|
作者
Remenieras, JP [1 ]
Matar, OB [1 ]
Labat, V [1 ]
Patat, F [1 ]
机构
[1] GIP ULTRASONS, LUSSI EA 2102, F-37042 Tours, France
关键词
finite amplitude propagation; Kramers-Kroning relations; nonlinear acoustics;
D O I
10.1016/S0041-624X(99)00112-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This work aims to validate a time domain numerical model for the nonlinear propagation of a short pulse of finite amplitude sound beam propagation in a tissue-mimicking liquid. The complete evolution equation is simply derived by a superposition of elementary operators corresponding to the 'one effect equation'. Diffraction (L) over cap(D), absorption and dispersion (L) over cap(AD), and nonlinear distortion (L) over cap(NL) effects are treated independently using a first order operator-splitting algorithm. Using the method of fractional steps, the normal particle velocity and the acoustical pressure are calculated plane by plane, at each point of a two-dimensional spatial grid, from the surface of the plane circular transducer to a specified distance. The (L) over cap(A) operator is a time convolution between the particle velocity and the causal attenuation filter built after the Kramers-Kroning relations. The (L) over cap(A) operator is a time-based transformation obtained by following an implicit Poisson analytic solution. The (L) over cap(D) operator is the usual Rayleigh integral. We present a comparison between theoretical and experimental temporal pressure waveform and axial pressure curves for fundamental (2.25 MHz), second, third and fourth harmonics, obtained after spectral analysis. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条
  • [1] TIME-DOMAIN MODELING OF PULSED FINITE-AMPLITUDE SOUND BEAMS
    LEE, YS
    HAMILTON, MF
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (02): : 906 - 917
  • [2] Time-domain nonlinear distortion of pulsed finite-amplitude sound beam: Calculation and experiments
    Remenieras, JP
    Matar, OB
    Labat, V
    Felix, N
    Patat, F
    1999 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 1999, : 1291 - 1294
  • [3] Modeling of pulsed finite-amplitude focused sound beams in time domain
    INSERM - Unité 281, 151 Cours Albert Thomas, Lyon Cedex 03, France
    不详
    不详
    J. Acoust. Soc. Am., 4 (2061-2072):
  • [4] Modeling of pulsed finite-amplitude focused sound beams in time domain
    Tavakkoli, J
    Cathignol, D
    Souchon, R
    Sapozhnikov, OA
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (04): : 2061 - 2072
  • [5] Time-domain modeling of finite-amplitude sound in relaxing fluids
    Cleveland, RO
    Hamilton, MF
    Blackstock, DT
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (06): : 3312 - 3318
  • [6] Time-domain modeling of finite-amplitude sound beams in three-dimensional Cartesian coordinate system
    LIU Wei YANG Jun TIAN Jing (The Key Laboratory of Noise and Vibration Research
    Chinese Journal of Acoustics, 2012, 31 (04) : 408 - 422
  • [7] DISTORTION OF PULSED INPUT SIGNAL IN FINITE-DIFFERENCE TIME-DOMAIN GRID
    Soldatenkov, V. P.
    Yurtsev, O. A.
    2008 4TH INTERNATIONAL CONFERENCE ON ULTRAWIDEBAND AND ULTRASHORT IMPULSE SIGNALS, PROCEEDINGS, 2008, : 247 - 248
  • [8] Time-reversed sound beams of finite amplitude
    Cunningham, KB
    Hamilton, MF
    Brysev, AP
    Krutyansky, LM
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2001, 109 (06): : 2668 - 2674
  • [9] Nonlinear Distortion Characteristic Analysis for the Finite Amplitude Sound Pressures in the Pistonphone
    Zhang, Fan
    He, Wen
    Zhong, Junjie
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2017, 25 (04)
  • [10] DISTORTION OF FINITE AMPLITUDE SOUND WAVE
    POWELL, A
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1960, 32 (07): : 886 - 886