The influence of cathode material, current density and pH on the rapid Cr(III) removal from concentrated tanning effluents via electro-precipitation

被引:17
作者
Bonola, Beatriz [1 ]
Sosa-Rodriguez, Fabiola S. [2 ]
Garcia-Perez, Ulises M. [3 ]
Romero-Ibarra, Issis [1 ]
Henquin, Eduardo R. [4 ]
Vazquez-Arenas, Jorge [5 ]
机构
[1] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Ave IPN 2580, Mexico City 07340, Mexico
[2] Metropolitan Autonomous Univ Azcapotzalco UAM, Res Area Growth & Environm, Ave San Pablo 180, Mexico City 02200, Mexico
[3] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Ctr Invest & Innovac Ingn Aeronaut, Carretera Salinas Victoria Km 2-3, Apodaca 66600, Nuevo Leon, Mexico
[4] Consejo Nacl Invest Cient & Tecn CONICET, Inst Desarrollo & Diseno INGAR, Avellaneda 3657,S3002GJC, Santa Fe, Argentina
[5] Inst Politecn Nacl, Ctr Mexicano Producc Mas Limpia, Ave Acueducto S-N, Mexico City 07340, Mexico
来源
JOURNAL OF HAZARDOUS MATERIALS ADVANCES | 2021年 / 2卷
关键词
Chromium removal; Cr(III); Tanning wastewater; Electro-precipitation; Iron dissolution;
D O I
10.1016/j.hazadv.2021.100008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Cr(III) removal (3585 mg L-1) from real tanning discharges is herein conducted using an electro-precipitation process in a rotating cylinder electrode (RCE) reactor. A 1018-type carbon steel anode and two different cathodes (TiO2/RuO2 or 316L stainless steel, 316L SS) are tested within this process, using three current densities (10, 20 and 30 mA cm(-2)), and two initial pH values for the real solution. A synthetic solution is initially evaluated to analyze more ideal conditions in the reactor. The Cr(III) electroprecipitation is not favorable in the original pH of the real tannery wastewater (similar to 3.55) unlike the synthetic solution (pH 2.8), presumably since the Fe-Cr interaction is hindered by impurities in the solution, whereby the pH of the real discharge needs to be modified to pH 5 or 6. Residence times of 4800 (80 min) and 3600 s (60 min) using 30 mA cm(-2) are enough to remove all the Cr concentration at pH 5 and 6, respectively. Energy consumptions of 10 and 7.5 kWh m(-3) are calculated for these treatments, respectively. The precipitates are mainly comprised of Cr2FeO4(s) (Chromite) regardless of the experimental condition used in the removal process, followed by minor traces of Cr(OH)(3(s)) and CrO(OH)((s)). A reaction mechanism is proposed for the Cr(III) electro-precipitation relying on the thermodynamic diagrams, and characterizations of the precipitates.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Remediation and recycling of chromium from tannery wastewater using combined chemical-biological treatment system [J].
Ahmed, Engy ;
Abdulla, Hesham M. ;
Mohamed, Amy H. ;
El-Bassuony, Ahmed D. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2016, 104 :1-10
[2]   Nickel recovery from an electroplating rinsing effluent using RCE bench scale and RCE pilot plant reactors: The influence of pH control [J].
Almazan-Ruiz, F. J. ;
Caballero, F. ;
Cruz-Diaz, M. R. ;
Rivero, E. P. ;
Vazquez-Arenas, J. ;
Gonzalez, I. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 97 :18-27
[3]  
[Anonymous], About us
[4]   Chromium adsorption into a macroporous resin based on vinylpyridine-divinylbenzene copolymers: thermodynamics, kinetics, and process dynamic in a fixed bed column [J].
Antonio Arcos-Casarrubias, Jose ;
Cruz-Diaz, Martin R. ;
Cardoso-Martinez, Judith ;
Vazquez-Arenas, Jorge ;
Vidal Caballero-Dominguez, Francisco .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2018, 24 (01) :105-120
[5]   Removal of Cr(III) in the fixed bed column and batch reactors using as adsorbent zeolite NaX [J].
Barrosa, MASD ;
Silva, EA ;
Arroyo, PA ;
Tavares, CRG ;
Schneider, RM ;
Suszek, M ;
Sousa-Aguiar, EF .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5959-5966
[6]   GROWTH MECHANISM OF HYDROUS CHROMIUM(III) OXIDE SPHERICAL-PARTICLES OF NARROW SIZE DISTRIBUTION [J].
BELL, A ;
MATIJEVI.E .
JOURNAL OF PHYSICAL CHEMISTRY, 1974, 78 (25) :2621-2625
[7]   COMPLEX CHEMISTRY OF HYDROUS CHROMIUM(III) OXIDE SOL FORMATION [J].
BELL, A ;
MATIJEVIC, E .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1975, 37 (04) :907-912
[8]   Pourbaix diagrams for the ternary system of iron-chromium-nickel [J].
Beverskog, B ;
Puigdomenech, I .
CORROSION, 1999, 55 (11) :1077-1087
[9]   Characterization of the Effluents from Leather Processing Industries [J].
Chowdhury M. ;
Mostafa M.G. ;
Biswas T.K. ;
Mandal A. ;
Saha A.K. .
Environmental Processes, 2015, 2 (01) :173-187
[10]  
conagua.gob, US